Solve for a
a=-\frac{\sqrt{30}}{10}+\frac{3}{5}\approx 0.052277442
a=\frac{\sqrt{30}}{10}+\frac{3}{5}\approx 1.147722558
Share
Copied to clipboard
11-120a+100a^{2}=5
Use the distributive property to multiply 1-10a by 11-10a and combine like terms.
11-120a+100a^{2}-5=0
Subtract 5 from both sides.
6-120a+100a^{2}=0
Subtract 5 from 11 to get 6.
100a^{2}-120a+6=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-120\right)±\sqrt{\left(-120\right)^{2}-4\times 100\times 6}}{2\times 100}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 100 for a, -120 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-120\right)±\sqrt{14400-4\times 100\times 6}}{2\times 100}
Square -120.
a=\frac{-\left(-120\right)±\sqrt{14400-400\times 6}}{2\times 100}
Multiply -4 times 100.
a=\frac{-\left(-120\right)±\sqrt{14400-2400}}{2\times 100}
Multiply -400 times 6.
a=\frac{-\left(-120\right)±\sqrt{12000}}{2\times 100}
Add 14400 to -2400.
a=\frac{-\left(-120\right)±20\sqrt{30}}{2\times 100}
Take the square root of 12000.
a=\frac{120±20\sqrt{30}}{2\times 100}
The opposite of -120 is 120.
a=\frac{120±20\sqrt{30}}{200}
Multiply 2 times 100.
a=\frac{20\sqrt{30}+120}{200}
Now solve the equation a=\frac{120±20\sqrt{30}}{200} when ± is plus. Add 120 to 20\sqrt{30}.
a=\frac{\sqrt{30}}{10}+\frac{3}{5}
Divide 120+20\sqrt{30} by 200.
a=\frac{120-20\sqrt{30}}{200}
Now solve the equation a=\frac{120±20\sqrt{30}}{200} when ± is minus. Subtract 20\sqrt{30} from 120.
a=-\frac{\sqrt{30}}{10}+\frac{3}{5}
Divide 120-20\sqrt{30} by 200.
a=\frac{\sqrt{30}}{10}+\frac{3}{5} a=-\frac{\sqrt{30}}{10}+\frac{3}{5}
The equation is now solved.
11-120a+100a^{2}=5
Use the distributive property to multiply 1-10a by 11-10a and combine like terms.
-120a+100a^{2}=5-11
Subtract 11 from both sides.
-120a+100a^{2}=-6
Subtract 11 from 5 to get -6.
100a^{2}-120a=-6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{100a^{2}-120a}{100}=-\frac{6}{100}
Divide both sides by 100.
a^{2}+\left(-\frac{120}{100}\right)a=-\frac{6}{100}
Dividing by 100 undoes the multiplication by 100.
a^{2}-\frac{6}{5}a=-\frac{6}{100}
Reduce the fraction \frac{-120}{100} to lowest terms by extracting and canceling out 20.
a^{2}-\frac{6}{5}a=-\frac{3}{50}
Reduce the fraction \frac{-6}{100} to lowest terms by extracting and canceling out 2.
a^{2}-\frac{6}{5}a+\left(-\frac{3}{5}\right)^{2}=-\frac{3}{50}+\left(-\frac{3}{5}\right)^{2}
Divide -\frac{6}{5}, the coefficient of the x term, by 2 to get -\frac{3}{5}. Then add the square of -\frac{3}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-\frac{6}{5}a+\frac{9}{25}=-\frac{3}{50}+\frac{9}{25}
Square -\frac{3}{5} by squaring both the numerator and the denominator of the fraction.
a^{2}-\frac{6}{5}a+\frac{9}{25}=\frac{3}{10}
Add -\frac{3}{50} to \frac{9}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a-\frac{3}{5}\right)^{2}=\frac{3}{10}
Factor a^{2}-\frac{6}{5}a+\frac{9}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{3}{5}\right)^{2}}=\sqrt{\frac{3}{10}}
Take the square root of both sides of the equation.
a-\frac{3}{5}=\frac{\sqrt{30}}{10} a-\frac{3}{5}=-\frac{\sqrt{30}}{10}
Simplify.
a=\frac{\sqrt{30}}{10}+\frac{3}{5} a=-\frac{\sqrt{30}}{10}+\frac{3}{5}
Add \frac{3}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}