Evaluate
-3.4632
Factor
-3.4632
Share
Copied to clipboard
1-\frac{0.0256\times \frac{3\times 25+15}{25}}{\frac{9}{55}}-\frac{6}{\frac{1\times 13+7}{13}}
Calculate 0.4 to the power of 4 and get 0.0256.
1-\frac{0.0256\times \frac{75+15}{25}}{\frac{9}{55}}-\frac{6}{\frac{1\times 13+7}{13}}
Multiply 3 and 25 to get 75.
1-\frac{0.0256\times \frac{90}{25}}{\frac{9}{55}}-\frac{6}{\frac{1\times 13+7}{13}}
Add 75 and 15 to get 90.
1-\frac{0.0256\times \frac{18}{5}}{\frac{9}{55}}-\frac{6}{\frac{1\times 13+7}{13}}
Reduce the fraction \frac{90}{25} to lowest terms by extracting and canceling out 5.
1-\frac{\frac{16}{625}\times \frac{18}{5}}{\frac{9}{55}}-\frac{6}{\frac{1\times 13+7}{13}}
Convert decimal number 0.0256 to fraction \frac{256}{10000}. Reduce the fraction \frac{256}{10000} to lowest terms by extracting and canceling out 16.
1-\frac{\frac{16\times 18}{625\times 5}}{\frac{9}{55}}-\frac{6}{\frac{1\times 13+7}{13}}
Multiply \frac{16}{625} times \frac{18}{5} by multiplying numerator times numerator and denominator times denominator.
1-\frac{\frac{288}{3125}}{\frac{9}{55}}-\frac{6}{\frac{1\times 13+7}{13}}
Do the multiplications in the fraction \frac{16\times 18}{625\times 5}.
1-\frac{288}{3125}\times \frac{55}{9}-\frac{6}{\frac{1\times 13+7}{13}}
Divide \frac{288}{3125} by \frac{9}{55} by multiplying \frac{288}{3125} by the reciprocal of \frac{9}{55}.
1-\frac{288\times 55}{3125\times 9}-\frac{6}{\frac{1\times 13+7}{13}}
Multiply \frac{288}{3125} times \frac{55}{9} by multiplying numerator times numerator and denominator times denominator.
1-\frac{15840}{28125}-\frac{6}{\frac{1\times 13+7}{13}}
Do the multiplications in the fraction \frac{288\times 55}{3125\times 9}.
1-\frac{352}{625}-\frac{6}{\frac{1\times 13+7}{13}}
Reduce the fraction \frac{15840}{28125} to lowest terms by extracting and canceling out 45.
\frac{625}{625}-\frac{352}{625}-\frac{6}{\frac{1\times 13+7}{13}}
Convert 1 to fraction \frac{625}{625}.
\frac{625-352}{625}-\frac{6}{\frac{1\times 13+7}{13}}
Since \frac{625}{625} and \frac{352}{625} have the same denominator, subtract them by subtracting their numerators.
\frac{273}{625}-\frac{6}{\frac{1\times 13+7}{13}}
Subtract 352 from 625 to get 273.
\frac{273}{625}-\frac{6\times 13}{1\times 13+7}
Divide 6 by \frac{1\times 13+7}{13} by multiplying 6 by the reciprocal of \frac{1\times 13+7}{13}.
\frac{273}{625}-\frac{78}{1\times 13+7}
Multiply 6 and 13 to get 78.
\frac{273}{625}-\frac{78}{13+7}
Multiply 1 and 13 to get 13.
\frac{273}{625}-\frac{78}{20}
Add 13 and 7 to get 20.
\frac{273}{625}-\frac{39}{10}
Reduce the fraction \frac{78}{20} to lowest terms by extracting and canceling out 2.
\frac{546}{1250}-\frac{4875}{1250}
Least common multiple of 625 and 10 is 1250. Convert \frac{273}{625} and \frac{39}{10} to fractions with denominator 1250.
\frac{546-4875}{1250}
Since \frac{546}{1250} and \frac{4875}{1250} have the same denominator, subtract them by subtracting their numerators.
-\frac{4329}{1250}
Subtract 4875 from 546 to get -4329.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}