Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(1-\tan(x)\right)^{2}-\left(1-2\tan(x)\right)=\left(\tan(x)\right)^{2}
Subtract 1-2\tan(x) from both sides.
\left(1-\tan(x)\right)^{2}-\left(1-2\tan(x)\right)-\left(\tan(x)\right)^{2}=0
Subtract \left(\tan(x)\right)^{2} from both sides.
1-2\tan(x)+\left(\tan(x)\right)^{2}-\left(1-2\tan(x)\right)-\left(\tan(x)\right)^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-\tan(x)\right)^{2}.
1-2\tan(x)+\left(\tan(x)\right)^{2}-1+2\tan(x)-\left(\tan(x)\right)^{2}=0
To find the opposite of 1-2\tan(x), find the opposite of each term.
-2\tan(x)+\left(\tan(x)\right)^{2}+2\tan(x)-\left(\tan(x)\right)^{2}=0
Subtract 1 from 1 to get 0.
\left(\tan(x)\right)^{2}-\left(\tan(x)\right)^{2}=0
Combine -2\tan(x) and 2\tan(x) to get 0.
0=0
Combine \left(\tan(x)\right)^{2} and -\left(\tan(x)\right)^{2} to get 0.
\text{true}
Compare 0 and 0.
x\in \mathrm{C}
This is true for any x.
\left(1-\tan(x)\right)^{2}-\left(1-2\tan(x)\right)=\left(\tan(x)\right)^{2}
Subtract 1-2\tan(x) from both sides.
\left(1-\tan(x)\right)^{2}-\left(1-2\tan(x)\right)-\left(\tan(x)\right)^{2}=0
Subtract \left(\tan(x)\right)^{2} from both sides.
1-2\tan(x)+\left(\tan(x)\right)^{2}-\left(1-2\tan(x)\right)-\left(\tan(x)\right)^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-\tan(x)\right)^{2}.
1-2\tan(x)+\left(\tan(x)\right)^{2}-1+2\tan(x)-\left(\tan(x)\right)^{2}=0
To find the opposite of 1-2\tan(x), find the opposite of each term.
-2\tan(x)+\left(\tan(x)\right)^{2}+2\tan(x)-\left(\tan(x)\right)^{2}=0
Subtract 1 from 1 to get 0.
\left(\tan(x)\right)^{2}-\left(\tan(x)\right)^{2}=0
Combine -2\tan(x) and 2\tan(x) to get 0.
0=0
Combine \left(\tan(x)\right)^{2} and -\left(\tan(x)\right)^{2} to get 0.
\text{true}
Compare 0 and 0.
x\in \mathrm{R}
This is true for any x.