Solve for x (complex solution)
x\in \mathrm{C}
\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}+\frac{\pi }{2}
Solve for x
x\neq \pi n_{1}+\frac{\pi }{2}
\forall n_{1}\in \mathrm{Z}
Graph
Share
Copied to clipboard
\left(1-\tan(x)\right)^{2}-\left(1-2\tan(x)\right)=\left(\tan(x)\right)^{2}
Subtract 1-2\tan(x) from both sides.
\left(1-\tan(x)\right)^{2}-\left(1-2\tan(x)\right)-\left(\tan(x)\right)^{2}=0
Subtract \left(\tan(x)\right)^{2} from both sides.
1-2\tan(x)+\left(\tan(x)\right)^{2}-\left(1-2\tan(x)\right)-\left(\tan(x)\right)^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-\tan(x)\right)^{2}.
1-2\tan(x)+\left(\tan(x)\right)^{2}-1+2\tan(x)-\left(\tan(x)\right)^{2}=0
To find the opposite of 1-2\tan(x), find the opposite of each term.
-2\tan(x)+\left(\tan(x)\right)^{2}+2\tan(x)-\left(\tan(x)\right)^{2}=0
Subtract 1 from 1 to get 0.
\left(\tan(x)\right)^{2}-\left(\tan(x)\right)^{2}=0
Combine -2\tan(x) and 2\tan(x) to get 0.
0=0
Combine \left(\tan(x)\right)^{2} and -\left(\tan(x)\right)^{2} to get 0.
\text{true}
Compare 0 and 0.
x\in \mathrm{C}
This is true for any x.
\left(1-\tan(x)\right)^{2}-\left(1-2\tan(x)\right)=\left(\tan(x)\right)^{2}
Subtract 1-2\tan(x) from both sides.
\left(1-\tan(x)\right)^{2}-\left(1-2\tan(x)\right)-\left(\tan(x)\right)^{2}=0
Subtract \left(\tan(x)\right)^{2} from both sides.
1-2\tan(x)+\left(\tan(x)\right)^{2}-\left(1-2\tan(x)\right)-\left(\tan(x)\right)^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-\tan(x)\right)^{2}.
1-2\tan(x)+\left(\tan(x)\right)^{2}-1+2\tan(x)-\left(\tan(x)\right)^{2}=0
To find the opposite of 1-2\tan(x), find the opposite of each term.
-2\tan(x)+\left(\tan(x)\right)^{2}+2\tan(x)-\left(\tan(x)\right)^{2}=0
Subtract 1 from 1 to get 0.
\left(\tan(x)\right)^{2}-\left(\tan(x)\right)^{2}=0
Combine -2\tan(x) and 2\tan(x) to get 0.
0=0
Combine \left(\tan(x)\right)^{2} and -\left(\tan(x)\right)^{2} to get 0.
\text{true}
Compare 0 and 0.
x\in \mathrm{R}
This is true for any x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}