Solve for α
\alpha =\frac{\left(\sqrt{5}-1\right)\beta }{2}
Solve for β
\beta =\frac{\left(\sqrt{5}+1\right)\alpha }{2}
Share
Copied to clipboard
\beta -\sqrt{5}\beta =-2\alpha
Use the distributive property to multiply 1-\sqrt{5} by \beta .
-2\alpha =\beta -\sqrt{5}\beta
Swap sides so that all variable terms are on the left hand side.
-2\alpha =-\sqrt{5}\beta +\beta
The equation is in standard form.
\frac{-2\alpha }{-2}=\frac{-\sqrt{5}\beta +\beta }{-2}
Divide both sides by -2.
\alpha =\frac{-\sqrt{5}\beta +\beta }{-2}
Dividing by -2 undoes the multiplication by -2.
\alpha =\frac{\sqrt{5}\beta -\beta }{2}
Divide \beta -\beta \sqrt{5} by -2.
\beta -\sqrt{5}\beta =-2\alpha
Use the distributive property to multiply 1-\sqrt{5} by \beta .
\left(1-\sqrt{5}\right)\beta =-2\alpha
Combine all terms containing \beta .
\frac{\left(1-\sqrt{5}\right)\beta }{1-\sqrt{5}}=-\frac{2\alpha }{1-\sqrt{5}}
Divide both sides by 1-\sqrt{5}.
\beta =-\frac{2\alpha }{1-\sqrt{5}}
Dividing by 1-\sqrt{5} undoes the multiplication by 1-\sqrt{5}.
\beta =\frac{\sqrt{5}\alpha +\alpha }{2}
Divide -2\alpha by 1-\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}