Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(1-3\sqrt{2}\right)\left(\sqrt{2}+\frac{1}{\sqrt{2}}\right)
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\left(1-3\sqrt{2}\right)\left(\sqrt{2}+\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\left(1-3\sqrt{2}\right)\left(\sqrt{2}+\frac{\sqrt{2}}{2}\right)
The square of \sqrt{2} is 2.
\left(1-3\sqrt{2}\right)\times \frac{3}{2}\sqrt{2}
Combine \sqrt{2} and \frac{\sqrt{2}}{2} to get \frac{3}{2}\sqrt{2}.
\left(\frac{3}{2}-3\sqrt{2}\times \frac{3}{2}\right)\sqrt{2}
Use the distributive property to multiply 1-3\sqrt{2} by \frac{3}{2}.
\left(\frac{3}{2}+\frac{-3\times 3}{2}\sqrt{2}\right)\sqrt{2}
Express -3\times \frac{3}{2} as a single fraction.
\left(\frac{3}{2}+\frac{-9}{2}\sqrt{2}\right)\sqrt{2}
Multiply -3 and 3 to get -9.
\left(\frac{3}{2}-\frac{9}{2}\sqrt{2}\right)\sqrt{2}
Fraction \frac{-9}{2} can be rewritten as -\frac{9}{2} by extracting the negative sign.
\frac{3}{2}\sqrt{2}-\frac{9}{2}\sqrt{2}\sqrt{2}
Use the distributive property to multiply \frac{3}{2}-\frac{9}{2}\sqrt{2} by \sqrt{2}.
\frac{3}{2}\sqrt{2}-\frac{9}{2}\times 2
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{3}{2}\sqrt{2}-9
Cancel out 2 and 2.