Evaluate
\frac{-18x^{6}+\left(7x^{2}-2\right)^{2}}{4}
Expand
-\frac{9x^{6}}{2}+\frac{49x^{4}}{4}-7x^{2}+1
Graph
Share
Copied to clipboard
\left(\frac{2}{2}-\frac{x^{2}}{2}\right)\left(1-\frac{4}{2}x^{2}\right)\left(1-\frac{9}{2}x^{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2}{2}.
\frac{2-x^{2}}{2}\left(1-\frac{4}{2}x^{2}\right)\left(1-\frac{9}{2}x^{2}\right)
Since \frac{2}{2} and \frac{x^{2}}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{2-x^{2}}{2}\left(1-2x^{2}\right)\left(1-\frac{9}{2}x^{2}\right)
Divide 4 by 2 to get 2.
\frac{\left(2-x^{2}\right)\left(1-2x^{2}\right)}{2}\left(1-\frac{9}{2}x^{2}\right)
Express \frac{2-x^{2}}{2}\left(1-2x^{2}\right) as a single fraction.
\frac{2-5x^{2}+2x^{4}}{2}\left(1-\frac{9}{2}x^{2}\right)
Use the distributive property to multiply 2-x^{2} by 1-2x^{2} and combine like terms.
\frac{2-5x^{2}+2x^{4}}{2}-\frac{9}{2}\times \frac{2-5x^{2}+2x^{4}}{2}x^{2}
Use the distributive property to multiply \frac{2-5x^{2}+2x^{4}}{2} by 1-\frac{9}{2}x^{2}.
\frac{2-5x^{2}+2x^{4}}{2}+\frac{-9\left(2-5x^{2}+2x^{4}\right)}{2\times 2}x^{2}
Multiply -\frac{9}{2} times \frac{2-5x^{2}+2x^{4}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{2-5x^{2}+2x^{4}}{2}+\frac{-9\left(2-5x^{2}+2x^{4}\right)x^{2}}{2\times 2}
Express \frac{-9\left(2-5x^{2}+2x^{4}\right)}{2\times 2}x^{2} as a single fraction.
\frac{2\left(2-5x^{2}+2x^{4}\right)}{2\times 2}+\frac{-9\left(2-5x^{2}+2x^{4}\right)x^{2}}{2\times 2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 2\times 2 is 2\times 2. Multiply \frac{2-5x^{2}+2x^{4}}{2} times \frac{2}{2}.
\frac{2\left(2-5x^{2}+2x^{4}\right)-9\left(2-5x^{2}+2x^{4}\right)x^{2}}{2\times 2}
Since \frac{2\left(2-5x^{2}+2x^{4}\right)}{2\times 2} and \frac{-9\left(2-5x^{2}+2x^{4}\right)x^{2}}{2\times 2} have the same denominator, add them by adding their numerators.
\frac{4-10x^{2}+4x^{4}-18x^{2}+45x^{4}-18x^{6}}{2\times 2}
Do the multiplications in 2\left(2-5x^{2}+2x^{4}\right)-9\left(2-5x^{2}+2x^{4}\right)x^{2}.
\frac{4-28x^{2}+49x^{4}-18x^{6}}{2\times 2}
Combine like terms in 4-10x^{2}+4x^{4}-18x^{2}+45x^{4}-18x^{6}.
\frac{4-28x^{2}+49x^{4}-18x^{6}}{4}
Expand 2\times 2.
\left(\frac{2}{2}-\frac{x^{2}}{2}\right)\left(1-\frac{4}{2}x^{2}\right)\left(1-\frac{9}{2}x^{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2}{2}.
\frac{2-x^{2}}{2}\left(1-\frac{4}{2}x^{2}\right)\left(1-\frac{9}{2}x^{2}\right)
Since \frac{2}{2} and \frac{x^{2}}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{2-x^{2}}{2}\left(1-2x^{2}\right)\left(1-\frac{9}{2}x^{2}\right)
Divide 4 by 2 to get 2.
\frac{\left(2-x^{2}\right)\left(1-2x^{2}\right)}{2}\left(1-\frac{9}{2}x^{2}\right)
Express \frac{2-x^{2}}{2}\left(1-2x^{2}\right) as a single fraction.
\frac{2-5x^{2}+2x^{4}}{2}\left(1-\frac{9}{2}x^{2}\right)
Use the distributive property to multiply 2-x^{2} by 1-2x^{2} and combine like terms.
\frac{2-5x^{2}+2x^{4}}{2}-\frac{9}{2}\times \frac{2-5x^{2}+2x^{4}}{2}x^{2}
Use the distributive property to multiply \frac{2-5x^{2}+2x^{4}}{2} by 1-\frac{9}{2}x^{2}.
\frac{2-5x^{2}+2x^{4}}{2}+\frac{-9\left(2-5x^{2}+2x^{4}\right)}{2\times 2}x^{2}
Multiply -\frac{9}{2} times \frac{2-5x^{2}+2x^{4}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{2-5x^{2}+2x^{4}}{2}+\frac{-9\left(2-5x^{2}+2x^{4}\right)x^{2}}{2\times 2}
Express \frac{-9\left(2-5x^{2}+2x^{4}\right)}{2\times 2}x^{2} as a single fraction.
\frac{2\left(2-5x^{2}+2x^{4}\right)}{2\times 2}+\frac{-9\left(2-5x^{2}+2x^{4}\right)x^{2}}{2\times 2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 2\times 2 is 2\times 2. Multiply \frac{2-5x^{2}+2x^{4}}{2} times \frac{2}{2}.
\frac{2\left(2-5x^{2}+2x^{4}\right)-9\left(2-5x^{2}+2x^{4}\right)x^{2}}{2\times 2}
Since \frac{2\left(2-5x^{2}+2x^{4}\right)}{2\times 2} and \frac{-9\left(2-5x^{2}+2x^{4}\right)x^{2}}{2\times 2} have the same denominator, add them by adding their numerators.
\frac{4-10x^{2}+4x^{4}-18x^{2}+45x^{4}-18x^{6}}{2\times 2}
Do the multiplications in 2\left(2-5x^{2}+2x^{4}\right)-9\left(2-5x^{2}+2x^{4}\right)x^{2}.
\frac{4-28x^{2}+49x^{4}-18x^{6}}{2\times 2}
Combine like terms in 4-10x^{2}+4x^{4}-18x^{2}+45x^{4}-18x^{6}.
\frac{4-28x^{2}+49x^{4}-18x^{6}}{4}
Expand 2\times 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}