Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{1-\frac{a^{2}}{a^{2}-b^{2}}}{1-\frac{a}{a-b}}
Divide a by a to get 1.
\frac{1-\frac{a^{2}}{\left(a+b\right)\left(a-b\right)}}{1-\frac{a}{a-b}}
Factor a^{2}-b^{2}.
\frac{\frac{\left(a+b\right)\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}-\frac{a^{2}}{\left(a+b\right)\left(a-b\right)}}{1-\frac{a}{a-b}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(a+b\right)\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}.
\frac{\frac{\left(a+b\right)\left(a-b\right)-a^{2}}{\left(a+b\right)\left(a-b\right)}}{1-\frac{a}{a-b}}
Since \frac{\left(a+b\right)\left(a-b\right)}{\left(a+b\right)\left(a-b\right)} and \frac{a^{2}}{\left(a+b\right)\left(a-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{2}-ab+ba-b^{2}-a^{2}}{\left(a+b\right)\left(a-b\right)}}{1-\frac{a}{a-b}}
Do the multiplications in \left(a+b\right)\left(a-b\right)-a^{2}.
\frac{\frac{-b^{2}}{\left(a+b\right)\left(a-b\right)}}{1-\frac{a}{a-b}}
Combine like terms in a^{2}-ab+ba-b^{2}-a^{2}.
\frac{\frac{-b^{2}}{\left(a+b\right)\left(a-b\right)}}{\frac{a-b}{a-b}-\frac{a}{a-b}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a-b}{a-b}.
\frac{\frac{-b^{2}}{\left(a+b\right)\left(a-b\right)}}{\frac{a-b-a}{a-b}}
Since \frac{a-b}{a-b} and \frac{a}{a-b} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-b^{2}}{\left(a+b\right)\left(a-b\right)}}{\frac{-b}{a-b}}
Combine like terms in a-b-a.
\frac{-b^{2}\left(a-b\right)}{\left(a+b\right)\left(a-b\right)\left(-1\right)b}
Divide \frac{-b^{2}}{\left(a+b\right)\left(a-b\right)} by \frac{-b}{a-b} by multiplying \frac{-b^{2}}{\left(a+b\right)\left(a-b\right)} by the reciprocal of \frac{-b}{a-b}.
\frac{b}{a+b}
Cancel out -b\left(a-b\right) in both numerator and denominator.
\frac{1-\frac{a^{2}}{a^{2}-b^{2}}}{1-\frac{a}{a-b}}
Divide a by a to get 1.
\frac{1-\frac{a^{2}}{\left(a+b\right)\left(a-b\right)}}{1-\frac{a}{a-b}}
Factor a^{2}-b^{2}.
\frac{\frac{\left(a+b\right)\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}-\frac{a^{2}}{\left(a+b\right)\left(a-b\right)}}{1-\frac{a}{a-b}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(a+b\right)\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}.
\frac{\frac{\left(a+b\right)\left(a-b\right)-a^{2}}{\left(a+b\right)\left(a-b\right)}}{1-\frac{a}{a-b}}
Since \frac{\left(a+b\right)\left(a-b\right)}{\left(a+b\right)\left(a-b\right)} and \frac{a^{2}}{\left(a+b\right)\left(a-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{2}-ab+ba-b^{2}-a^{2}}{\left(a+b\right)\left(a-b\right)}}{1-\frac{a}{a-b}}
Do the multiplications in \left(a+b\right)\left(a-b\right)-a^{2}.
\frac{\frac{-b^{2}}{\left(a+b\right)\left(a-b\right)}}{1-\frac{a}{a-b}}
Combine like terms in a^{2}-ab+ba-b^{2}-a^{2}.
\frac{\frac{-b^{2}}{\left(a+b\right)\left(a-b\right)}}{\frac{a-b}{a-b}-\frac{a}{a-b}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a-b}{a-b}.
\frac{\frac{-b^{2}}{\left(a+b\right)\left(a-b\right)}}{\frac{a-b-a}{a-b}}
Since \frac{a-b}{a-b} and \frac{a}{a-b} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-b^{2}}{\left(a+b\right)\left(a-b\right)}}{\frac{-b}{a-b}}
Combine like terms in a-b-a.
\frac{-b^{2}\left(a-b\right)}{\left(a+b\right)\left(a-b\right)\left(-1\right)b}
Divide \frac{-b^{2}}{\left(a+b\right)\left(a-b\right)} by \frac{-b}{a-b} by multiplying \frac{-b^{2}}{\left(a+b\right)\left(a-b\right)} by the reciprocal of \frac{-b}{a-b}.
\frac{b}{a+b}
Cancel out -b\left(a-b\right) in both numerator and denominator.