Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(1-\frac{5}{\left(a-2\right)\left(a+2\right)}\right)\times \frac{a+2}{a^{2}-3a}
Factor a^{2}-4.
\left(\frac{\left(a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}-\frac{5}{\left(a-2\right)\left(a+2\right)}\right)\times \frac{a+2}{a^{2}-3a}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}.
\frac{\left(a-2\right)\left(a+2\right)-5}{\left(a-2\right)\left(a+2\right)}\times \frac{a+2}{a^{2}-3a}
Since \frac{\left(a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)} and \frac{5}{\left(a-2\right)\left(a+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}+2a-2a-4-5}{\left(a-2\right)\left(a+2\right)}\times \frac{a+2}{a^{2}-3a}
Do the multiplications in \left(a-2\right)\left(a+2\right)-5.
\frac{a^{2}-9}{\left(a-2\right)\left(a+2\right)}\times \frac{a+2}{a^{2}-3a}
Combine like terms in a^{2}+2a-2a-4-5.
\frac{\left(a^{2}-9\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)\left(a^{2}-3a\right)}
Multiply \frac{a^{2}-9}{\left(a-2\right)\left(a+2\right)} times \frac{a+2}{a^{2}-3a} by multiplying numerator times numerator and denominator times denominator.
\frac{a^{2}-9}{\left(a-2\right)\left(a^{2}-3a\right)}
Cancel out a+2 in both numerator and denominator.
\frac{\left(a-3\right)\left(a+3\right)}{a\left(a-3\right)\left(a-2\right)}
Factor the expressions that are not already factored.
\frac{a+3}{a\left(a-2\right)}
Cancel out a-3 in both numerator and denominator.
\frac{a+3}{a^{2}-2a}
Expand the expression.
\left(1-\frac{5}{\left(a-2\right)\left(a+2\right)}\right)\times \frac{a+2}{a^{2}-3a}
Factor a^{2}-4.
\left(\frac{\left(a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}-\frac{5}{\left(a-2\right)\left(a+2\right)}\right)\times \frac{a+2}{a^{2}-3a}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}.
\frac{\left(a-2\right)\left(a+2\right)-5}{\left(a-2\right)\left(a+2\right)}\times \frac{a+2}{a^{2}-3a}
Since \frac{\left(a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)} and \frac{5}{\left(a-2\right)\left(a+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}+2a-2a-4-5}{\left(a-2\right)\left(a+2\right)}\times \frac{a+2}{a^{2}-3a}
Do the multiplications in \left(a-2\right)\left(a+2\right)-5.
\frac{a^{2}-9}{\left(a-2\right)\left(a+2\right)}\times \frac{a+2}{a^{2}-3a}
Combine like terms in a^{2}+2a-2a-4-5.
\frac{\left(a^{2}-9\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)\left(a^{2}-3a\right)}
Multiply \frac{a^{2}-9}{\left(a-2\right)\left(a+2\right)} times \frac{a+2}{a^{2}-3a} by multiplying numerator times numerator and denominator times denominator.
\frac{a^{2}-9}{\left(a-2\right)\left(a^{2}-3a\right)}
Cancel out a+2 in both numerator and denominator.
\frac{\left(a-3\right)\left(a+3\right)}{a\left(a-3\right)\left(a-2\right)}
Factor the expressions that are not already factored.
\frac{a+3}{a\left(a-2\right)}
Cancel out a-3 in both numerator and denominator.
\frac{a+3}{a^{2}-2a}
Expand the expression.