Evaluate
\frac{295}{42}\approx 7.023809524
Factor
\frac{5 \cdot 59}{2 \cdot 3 \cdot 7} = 7\frac{1}{42} = 7.023809523809524
Share
Copied to clipboard
\left(\frac{7}{7}-\frac{5}{7}\right)\left(\frac{3-\frac{6}{7}-\frac{5}{14}}{\frac{5}{6}-\frac{1}{3}-\frac{3}{7}}-\frac{5}{12}\right)
Convert 1 to fraction \frac{7}{7}.
\frac{7-5}{7}\left(\frac{3-\frac{6}{7}-\frac{5}{14}}{\frac{5}{6}-\frac{1}{3}-\frac{3}{7}}-\frac{5}{12}\right)
Since \frac{7}{7} and \frac{5}{7} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{7}\left(\frac{3-\frac{6}{7}-\frac{5}{14}}{\frac{5}{6}-\frac{1}{3}-\frac{3}{7}}-\frac{5}{12}\right)
Subtract 5 from 7 to get 2.
\frac{2}{7}\left(\frac{\frac{21}{7}-\frac{6}{7}-\frac{5}{14}}{\frac{5}{6}-\frac{1}{3}-\frac{3}{7}}-\frac{5}{12}\right)
Convert 3 to fraction \frac{21}{7}.
\frac{2}{7}\left(\frac{\frac{21-6}{7}-\frac{5}{14}}{\frac{5}{6}-\frac{1}{3}-\frac{3}{7}}-\frac{5}{12}\right)
Since \frac{21}{7} and \frac{6}{7} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{7}\left(\frac{\frac{15}{7}-\frac{5}{14}}{\frac{5}{6}-\frac{1}{3}-\frac{3}{7}}-\frac{5}{12}\right)
Subtract 6 from 21 to get 15.
\frac{2}{7}\left(\frac{\frac{30}{14}-\frac{5}{14}}{\frac{5}{6}-\frac{1}{3}-\frac{3}{7}}-\frac{5}{12}\right)
Least common multiple of 7 and 14 is 14. Convert \frac{15}{7} and \frac{5}{14} to fractions with denominator 14.
\frac{2}{7}\left(\frac{\frac{30-5}{14}}{\frac{5}{6}-\frac{1}{3}-\frac{3}{7}}-\frac{5}{12}\right)
Since \frac{30}{14} and \frac{5}{14} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{7}\left(\frac{\frac{25}{14}}{\frac{5}{6}-\frac{1}{3}-\frac{3}{7}}-\frac{5}{12}\right)
Subtract 5 from 30 to get 25.
\frac{2}{7}\left(\frac{\frac{25}{14}}{\frac{5}{6}-\frac{2}{6}-\frac{3}{7}}-\frac{5}{12}\right)
Least common multiple of 6 and 3 is 6. Convert \frac{5}{6} and \frac{1}{3} to fractions with denominator 6.
\frac{2}{7}\left(\frac{\frac{25}{14}}{\frac{5-2}{6}-\frac{3}{7}}-\frac{5}{12}\right)
Since \frac{5}{6} and \frac{2}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{7}\left(\frac{\frac{25}{14}}{\frac{3}{6}-\frac{3}{7}}-\frac{5}{12}\right)
Subtract 2 from 5 to get 3.
\frac{2}{7}\left(\frac{\frac{25}{14}}{\frac{1}{2}-\frac{3}{7}}-\frac{5}{12}\right)
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\frac{2}{7}\left(\frac{\frac{25}{14}}{\frac{7}{14}-\frac{6}{14}}-\frac{5}{12}\right)
Least common multiple of 2 and 7 is 14. Convert \frac{1}{2} and \frac{3}{7} to fractions with denominator 14.
\frac{2}{7}\left(\frac{\frac{25}{14}}{\frac{7-6}{14}}-\frac{5}{12}\right)
Since \frac{7}{14} and \frac{6}{14} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{7}\left(\frac{\frac{25}{14}}{\frac{1}{14}}-\frac{5}{12}\right)
Subtract 6 from 7 to get 1.
\frac{2}{7}\left(\frac{25}{14}\times 14-\frac{5}{12}\right)
Divide \frac{25}{14} by \frac{1}{14} by multiplying \frac{25}{14} by the reciprocal of \frac{1}{14}.
\frac{2}{7}\left(25-\frac{5}{12}\right)
Cancel out 14 and 14.
\frac{2}{7}\left(\frac{300}{12}-\frac{5}{12}\right)
Convert 25 to fraction \frac{300}{12}.
\frac{2}{7}\times \frac{300-5}{12}
Since \frac{300}{12} and \frac{5}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{7}\times \frac{295}{12}
Subtract 5 from 300 to get 295.
\frac{2\times 295}{7\times 12}
Multiply \frac{2}{7} times \frac{295}{12} by multiplying numerator times numerator and denominator times denominator.
\frac{590}{84}
Do the multiplications in the fraction \frac{2\times 295}{7\times 12}.
\frac{295}{42}
Reduce the fraction \frac{590}{84} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}