Evaluate
\frac{a^{2}-8}{a\left(a+2\right)}
Expand
\frac{a^{2}-8}{a\left(a+2\right)}
Quiz
Polynomial
5 problems similar to:
( 1 - \frac { 4 } { a ^ { 2 } - 4 } ) \div \frac { a } { a - 2 }
Share
Copied to clipboard
\frac{1-\frac{4}{\left(a-2\right)\left(a+2\right)}}{\frac{a}{a-2}}
Factor a^{2}-4.
\frac{\frac{\left(a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}-\frac{4}{\left(a-2\right)\left(a+2\right)}}{\frac{a}{a-2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}.
\frac{\frac{\left(a-2\right)\left(a+2\right)-4}{\left(a-2\right)\left(a+2\right)}}{\frac{a}{a-2}}
Since \frac{\left(a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)} and \frac{4}{\left(a-2\right)\left(a+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{2}+2a-2a-4-4}{\left(a-2\right)\left(a+2\right)}}{\frac{a}{a-2}}
Do the multiplications in \left(a-2\right)\left(a+2\right)-4.
\frac{\frac{a^{2}-8}{\left(a-2\right)\left(a+2\right)}}{\frac{a}{a-2}}
Combine like terms in a^{2}+2a-2a-4-4.
\frac{\left(a^{2}-8\right)\left(a-2\right)}{\left(a-2\right)\left(a+2\right)a}
Divide \frac{a^{2}-8}{\left(a-2\right)\left(a+2\right)} by \frac{a}{a-2} by multiplying \frac{a^{2}-8}{\left(a-2\right)\left(a+2\right)} by the reciprocal of \frac{a}{a-2}.
\frac{a^{2}-8}{a\left(a+2\right)}
Cancel out a-2 in both numerator and denominator.
\frac{a^{2}-8}{a^{2}+2a}
Use the distributive property to multiply a by a+2.
\frac{1-\frac{4}{\left(a-2\right)\left(a+2\right)}}{\frac{a}{a-2}}
Factor a^{2}-4.
\frac{\frac{\left(a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}-\frac{4}{\left(a-2\right)\left(a+2\right)}}{\frac{a}{a-2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}.
\frac{\frac{\left(a-2\right)\left(a+2\right)-4}{\left(a-2\right)\left(a+2\right)}}{\frac{a}{a-2}}
Since \frac{\left(a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)} and \frac{4}{\left(a-2\right)\left(a+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{2}+2a-2a-4-4}{\left(a-2\right)\left(a+2\right)}}{\frac{a}{a-2}}
Do the multiplications in \left(a-2\right)\left(a+2\right)-4.
\frac{\frac{a^{2}-8}{\left(a-2\right)\left(a+2\right)}}{\frac{a}{a-2}}
Combine like terms in a^{2}+2a-2a-4-4.
\frac{\left(a^{2}-8\right)\left(a-2\right)}{\left(a-2\right)\left(a+2\right)a}
Divide \frac{a^{2}-8}{\left(a-2\right)\left(a+2\right)} by \frac{a}{a-2} by multiplying \frac{a^{2}-8}{\left(a-2\right)\left(a+2\right)} by the reciprocal of \frac{a}{a-2}.
\frac{a^{2}-8}{a\left(a+2\right)}
Cancel out a-2 in both numerator and denominator.
\frac{a^{2}-8}{a^{2}+2a}
Use the distributive property to multiply a by a+2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}