Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{1-\frac{4}{\left(a-2\right)\left(a+2\right)}}{\frac{a}{a-2}}
Factor a^{2}-4.
\frac{\frac{\left(a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}-\frac{4}{\left(a-2\right)\left(a+2\right)}}{\frac{a}{a-2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}.
\frac{\frac{\left(a-2\right)\left(a+2\right)-4}{\left(a-2\right)\left(a+2\right)}}{\frac{a}{a-2}}
Since \frac{\left(a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)} and \frac{4}{\left(a-2\right)\left(a+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{2}+2a-2a-4-4}{\left(a-2\right)\left(a+2\right)}}{\frac{a}{a-2}}
Do the multiplications in \left(a-2\right)\left(a+2\right)-4.
\frac{\frac{a^{2}-8}{\left(a-2\right)\left(a+2\right)}}{\frac{a}{a-2}}
Combine like terms in a^{2}+2a-2a-4-4.
\frac{\left(a^{2}-8\right)\left(a-2\right)}{\left(a-2\right)\left(a+2\right)a}
Divide \frac{a^{2}-8}{\left(a-2\right)\left(a+2\right)} by \frac{a}{a-2} by multiplying \frac{a^{2}-8}{\left(a-2\right)\left(a+2\right)} by the reciprocal of \frac{a}{a-2}.
\frac{a^{2}-8}{a\left(a+2\right)}
Cancel out a-2 in both numerator and denominator.
\frac{a^{2}-8}{a^{2}+2a}
Use the distributive property to multiply a by a+2.
\frac{1-\frac{4}{\left(a-2\right)\left(a+2\right)}}{\frac{a}{a-2}}
Factor a^{2}-4.
\frac{\frac{\left(a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}-\frac{4}{\left(a-2\right)\left(a+2\right)}}{\frac{a}{a-2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}.
\frac{\frac{\left(a-2\right)\left(a+2\right)-4}{\left(a-2\right)\left(a+2\right)}}{\frac{a}{a-2}}
Since \frac{\left(a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)} and \frac{4}{\left(a-2\right)\left(a+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{2}+2a-2a-4-4}{\left(a-2\right)\left(a+2\right)}}{\frac{a}{a-2}}
Do the multiplications in \left(a-2\right)\left(a+2\right)-4.
\frac{\frac{a^{2}-8}{\left(a-2\right)\left(a+2\right)}}{\frac{a}{a-2}}
Combine like terms in a^{2}+2a-2a-4-4.
\frac{\left(a^{2}-8\right)\left(a-2\right)}{\left(a-2\right)\left(a+2\right)a}
Divide \frac{a^{2}-8}{\left(a-2\right)\left(a+2\right)} by \frac{a}{a-2} by multiplying \frac{a^{2}-8}{\left(a-2\right)\left(a+2\right)} by the reciprocal of \frac{a}{a-2}.
\frac{a^{2}-8}{a\left(a+2\right)}
Cancel out a-2 in both numerator and denominator.
\frac{a^{2}-8}{a^{2}+2a}
Use the distributive property to multiply a by a+2.