Evaluate
\frac{1}{4}=0.25
Factor
\frac{1}{2 ^ {2}} = 0.25
Share
Copied to clipboard
\frac{4}{4}-\frac{3}{4}+\left(\frac{3}{4}-\frac{1}{6}\right)\left(\left(\frac{8}{21}-\frac{1}{3}\right)\times \frac{28}{5}-\frac{4}{15}\right)
Convert 1 to fraction \frac{4}{4}.
\frac{4-3}{4}+\left(\frac{3}{4}-\frac{1}{6}\right)\left(\left(\frac{8}{21}-\frac{1}{3}\right)\times \frac{28}{5}-\frac{4}{15}\right)
Since \frac{4}{4} and \frac{3}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{4}+\left(\frac{3}{4}-\frac{1}{6}\right)\left(\left(\frac{8}{21}-\frac{1}{3}\right)\times \frac{28}{5}-\frac{4}{15}\right)
Subtract 3 from 4 to get 1.
\frac{1}{4}+\left(\frac{9}{12}-\frac{2}{12}\right)\left(\left(\frac{8}{21}-\frac{1}{3}\right)\times \frac{28}{5}-\frac{4}{15}\right)
Least common multiple of 4 and 6 is 12. Convert \frac{3}{4} and \frac{1}{6} to fractions with denominator 12.
\frac{1}{4}+\frac{9-2}{12}\left(\left(\frac{8}{21}-\frac{1}{3}\right)\times \frac{28}{5}-\frac{4}{15}\right)
Since \frac{9}{12} and \frac{2}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{4}+\frac{7}{12}\left(\left(\frac{8}{21}-\frac{1}{3}\right)\times \frac{28}{5}-\frac{4}{15}\right)
Subtract 2 from 9 to get 7.
\frac{1}{4}+\frac{7}{12}\left(\left(\frac{8}{21}-\frac{7}{21}\right)\times \frac{28}{5}-\frac{4}{15}\right)
Least common multiple of 21 and 3 is 21. Convert \frac{8}{21} and \frac{1}{3} to fractions with denominator 21.
\frac{1}{4}+\frac{7}{12}\left(\frac{8-7}{21}\times \frac{28}{5}-\frac{4}{15}\right)
Since \frac{8}{21} and \frac{7}{21} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{4}+\frac{7}{12}\left(\frac{1}{21}\times \frac{28}{5}-\frac{4}{15}\right)
Subtract 7 from 8 to get 1.
\frac{1}{4}+\frac{7}{12}\left(\frac{1\times 28}{21\times 5}-\frac{4}{15}\right)
Multiply \frac{1}{21} times \frac{28}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{4}+\frac{7}{12}\left(\frac{28}{105}-\frac{4}{15}\right)
Do the multiplications in the fraction \frac{1\times 28}{21\times 5}.
\frac{1}{4}+\frac{7}{12}\left(\frac{4}{15}-\frac{4}{15}\right)
Reduce the fraction \frac{28}{105} to lowest terms by extracting and canceling out 7.
\frac{1}{4}+\frac{7}{12}\times 0
Subtract \frac{4}{15} from \frac{4}{15} to get 0.
\frac{1}{4}+0
Multiply \frac{7}{12} and 0 to get 0.
\frac{1}{4}
Add \frac{1}{4} and 0 to get \frac{1}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}