Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{4}{4}-\frac{3}{4}+\left(\frac{3}{4}-\frac{1}{6}\right)\left(\left(\frac{8}{21}-\frac{1}{3}\right)\times \frac{28}{5}-\frac{4}{15}\right)
Convert 1 to fraction \frac{4}{4}.
\frac{4-3}{4}+\left(\frac{3}{4}-\frac{1}{6}\right)\left(\left(\frac{8}{21}-\frac{1}{3}\right)\times \frac{28}{5}-\frac{4}{15}\right)
Since \frac{4}{4} and \frac{3}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{4}+\left(\frac{3}{4}-\frac{1}{6}\right)\left(\left(\frac{8}{21}-\frac{1}{3}\right)\times \frac{28}{5}-\frac{4}{15}\right)
Subtract 3 from 4 to get 1.
\frac{1}{4}+\left(\frac{9}{12}-\frac{2}{12}\right)\left(\left(\frac{8}{21}-\frac{1}{3}\right)\times \frac{28}{5}-\frac{4}{15}\right)
Least common multiple of 4 and 6 is 12. Convert \frac{3}{4} and \frac{1}{6} to fractions with denominator 12.
\frac{1}{4}+\frac{9-2}{12}\left(\left(\frac{8}{21}-\frac{1}{3}\right)\times \frac{28}{5}-\frac{4}{15}\right)
Since \frac{9}{12} and \frac{2}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{4}+\frac{7}{12}\left(\left(\frac{8}{21}-\frac{1}{3}\right)\times \frac{28}{5}-\frac{4}{15}\right)
Subtract 2 from 9 to get 7.
\frac{1}{4}+\frac{7}{12}\left(\left(\frac{8}{21}-\frac{7}{21}\right)\times \frac{28}{5}-\frac{4}{15}\right)
Least common multiple of 21 and 3 is 21. Convert \frac{8}{21} and \frac{1}{3} to fractions with denominator 21.
\frac{1}{4}+\frac{7}{12}\left(\frac{8-7}{21}\times \frac{28}{5}-\frac{4}{15}\right)
Since \frac{8}{21} and \frac{7}{21} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{4}+\frac{7}{12}\left(\frac{1}{21}\times \frac{28}{5}-\frac{4}{15}\right)
Subtract 7 from 8 to get 1.
\frac{1}{4}+\frac{7}{12}\left(\frac{1\times 28}{21\times 5}-\frac{4}{15}\right)
Multiply \frac{1}{21} times \frac{28}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{4}+\frac{7}{12}\left(\frac{28}{105}-\frac{4}{15}\right)
Do the multiplications in the fraction \frac{1\times 28}{21\times 5}.
\frac{1}{4}+\frac{7}{12}\left(\frac{4}{15}-\frac{4}{15}\right)
Reduce the fraction \frac{28}{105} to lowest terms by extracting and canceling out 7.
\frac{1}{4}+\frac{7}{12}\times 0
Subtract \frac{4}{15} from \frac{4}{15} to get 0.
\frac{1}{4}+0
Multiply \frac{7}{12} and 0 to get 0.
\frac{1}{4}
Add \frac{1}{4} and 0 to get \frac{1}{4}.