Evaluate
-\frac{2\left(x^{2}+2x+4\right)}{\left(x+2\right)x^{2}}
Expand
-\frac{2\left(x^{2}+2x+4\right)}{\left(x+2\right)x^{2}}
Graph
Share
Copied to clipboard
\frac{\left(\frac{x}{x}-\frac{2}{x}\right)^{2}}{\frac{x^{2}-4x+4}{x^{2}-4}}-\frac{x+4}{x+2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x}{x}.
\frac{\left(\frac{x-2}{x}\right)^{2}}{\frac{x^{2}-4x+4}{x^{2}-4}}-\frac{x+4}{x+2}
Since \frac{x}{x} and \frac{2}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{\left(x-2\right)^{2}}{x^{2}}}{\frac{x^{2}-4x+4}{x^{2}-4}}-\frac{x+4}{x+2}
To raise \frac{x-2}{x} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{\left(x-2\right)^{2}}{x^{2}}}{\frac{\left(x-2\right)^{2}}{\left(x-2\right)\left(x+2\right)}}-\frac{x+4}{x+2}
Factor the expressions that are not already factored in \frac{x^{2}-4x+4}{x^{2}-4}.
\frac{\frac{\left(x-2\right)^{2}}{x^{2}}}{\frac{x-2}{x+2}}-\frac{x+4}{x+2}
Cancel out x-2 in both numerator and denominator.
\frac{\left(x-2\right)^{2}\left(x+2\right)}{x^{2}\left(x-2\right)}-\frac{x+4}{x+2}
Divide \frac{\left(x-2\right)^{2}}{x^{2}} by \frac{x-2}{x+2} by multiplying \frac{\left(x-2\right)^{2}}{x^{2}} by the reciprocal of \frac{x-2}{x+2}.
\frac{\left(x-2\right)\left(x+2\right)}{x^{2}}-\frac{x+4}{x+2}
Cancel out x-2 in both numerator and denominator.
\frac{\left(x-2\right)\left(x+2\right)\left(x+2\right)}{\left(x+2\right)x^{2}}-\frac{\left(x+4\right)x^{2}}{\left(x+2\right)x^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2} and x+2 is \left(x+2\right)x^{2}. Multiply \frac{\left(x-2\right)\left(x+2\right)}{x^{2}} times \frac{x+2}{x+2}. Multiply \frac{x+4}{x+2} times \frac{x^{2}}{x^{2}}.
\frac{\left(x-2\right)\left(x+2\right)\left(x+2\right)-\left(x+4\right)x^{2}}{\left(x+2\right)x^{2}}
Since \frac{\left(x-2\right)\left(x+2\right)\left(x+2\right)}{\left(x+2\right)x^{2}} and \frac{\left(x+4\right)x^{2}}{\left(x+2\right)x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{3}+4x^{2}+4x-2x^{2}-8x-8-x^{3}-4x^{2}}{\left(x+2\right)x^{2}}
Do the multiplications in \left(x-2\right)\left(x+2\right)\left(x+2\right)-\left(x+4\right)x^{2}.
\frac{-2x^{2}-4x-8}{\left(x+2\right)x^{2}}
Combine like terms in x^{3}+4x^{2}+4x-2x^{2}-8x-8-x^{3}-4x^{2}.
\frac{-2x^{2}-4x-8}{x^{3}+2x^{2}}
Expand \left(x+2\right)x^{2}.
\frac{\left(\frac{x}{x}-\frac{2}{x}\right)^{2}}{\frac{x^{2}-4x+4}{x^{2}-4}}-\frac{x+4}{x+2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x}{x}.
\frac{\left(\frac{x-2}{x}\right)^{2}}{\frac{x^{2}-4x+4}{x^{2}-4}}-\frac{x+4}{x+2}
Since \frac{x}{x} and \frac{2}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{\left(x-2\right)^{2}}{x^{2}}}{\frac{x^{2}-4x+4}{x^{2}-4}}-\frac{x+4}{x+2}
To raise \frac{x-2}{x} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{\left(x-2\right)^{2}}{x^{2}}}{\frac{\left(x-2\right)^{2}}{\left(x-2\right)\left(x+2\right)}}-\frac{x+4}{x+2}
Factor the expressions that are not already factored in \frac{x^{2}-4x+4}{x^{2}-4}.
\frac{\frac{\left(x-2\right)^{2}}{x^{2}}}{\frac{x-2}{x+2}}-\frac{x+4}{x+2}
Cancel out x-2 in both numerator and denominator.
\frac{\left(x-2\right)^{2}\left(x+2\right)}{x^{2}\left(x-2\right)}-\frac{x+4}{x+2}
Divide \frac{\left(x-2\right)^{2}}{x^{2}} by \frac{x-2}{x+2} by multiplying \frac{\left(x-2\right)^{2}}{x^{2}} by the reciprocal of \frac{x-2}{x+2}.
\frac{\left(x-2\right)\left(x+2\right)}{x^{2}}-\frac{x+4}{x+2}
Cancel out x-2 in both numerator and denominator.
\frac{\left(x-2\right)\left(x+2\right)\left(x+2\right)}{\left(x+2\right)x^{2}}-\frac{\left(x+4\right)x^{2}}{\left(x+2\right)x^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2} and x+2 is \left(x+2\right)x^{2}. Multiply \frac{\left(x-2\right)\left(x+2\right)}{x^{2}} times \frac{x+2}{x+2}. Multiply \frac{x+4}{x+2} times \frac{x^{2}}{x^{2}}.
\frac{\left(x-2\right)\left(x+2\right)\left(x+2\right)-\left(x+4\right)x^{2}}{\left(x+2\right)x^{2}}
Since \frac{\left(x-2\right)\left(x+2\right)\left(x+2\right)}{\left(x+2\right)x^{2}} and \frac{\left(x+4\right)x^{2}}{\left(x+2\right)x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{3}+4x^{2}+4x-2x^{2}-8x-8-x^{3}-4x^{2}}{\left(x+2\right)x^{2}}
Do the multiplications in \left(x-2\right)\left(x+2\right)\left(x+2\right)-\left(x+4\right)x^{2}.
\frac{-2x^{2}-4x-8}{\left(x+2\right)x^{2}}
Combine like terms in x^{3}+4x^{2}+4x-2x^{2}-8x-8-x^{3}-4x^{2}.
\frac{-2x^{2}-4x-8}{x^{3}+2x^{2}}
Expand \left(x+2\right)x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}