Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

1-2a^{3}+\frac{4}{3}\left(a^{3}\right)^{2}-\frac{8}{27}\left(a^{3}\right)^{3}+\left(2a+\frac{1}{2}a^{2}\right)^{3}-\frac{1}{3}\left(-a\right)^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
Use binomial theorem \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} to expand \left(1-\frac{2}{3}a^{3}\right)^{3}.
1-2a^{3}+\frac{4}{3}a^{6}-\frac{8}{27}\left(a^{3}\right)^{3}+\left(2a+\frac{1}{2}a^{2}\right)^{3}-\frac{1}{3}\left(-a\right)^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
1-2a^{3}+\frac{4}{3}a^{6}-\frac{8}{27}a^{9}+\left(2a+\frac{1}{2}a^{2}\right)^{3}-\frac{1}{3}\left(-a\right)^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
1-2a^{3}+\frac{4}{3}a^{6}-\frac{8}{27}a^{9}+8a^{3}+6a^{2}a^{2}+\frac{3}{2}a\left(a^{2}\right)^{2}+\frac{1}{8}\left(a^{2}\right)^{3}-\frac{1}{3}\left(-a\right)^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
Use binomial theorem \left(p+q\right)^{3}=p^{3}+3p^{2}q+3pq^{2}+q^{3} to expand \left(2a+\frac{1}{2}a^{2}\right)^{3}.
1-2a^{3}+\frac{4}{3}a^{6}-\frac{8}{27}a^{9}+8a^{3}+6a^{4}+\frac{3}{2}a\left(a^{2}\right)^{2}+\frac{1}{8}\left(a^{2}\right)^{3}-\frac{1}{3}\left(-a\right)^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
1-2a^{3}+\frac{4}{3}a^{6}-\frac{8}{27}a^{9}+8a^{3}+6a^{4}+\frac{3}{2}aa^{4}+\frac{1}{8}\left(a^{2}\right)^{3}-\frac{1}{3}\left(-a\right)^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
1-2a^{3}+\frac{4}{3}a^{6}-\frac{8}{27}a^{9}+8a^{3}+6a^{4}+\frac{3}{2}a^{5}+\frac{1}{8}\left(a^{2}\right)^{3}-\frac{1}{3}\left(-a\right)^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
To multiply powers of the same base, add their exponents. Add 1 and 4 to get 5.
1-2a^{3}+\frac{4}{3}a^{6}-\frac{8}{27}a^{9}+8a^{3}+6a^{4}+\frac{3}{2}a^{5}+\frac{1}{8}a^{6}-\frac{1}{3}\left(-a\right)^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
1+6a^{3}+\frac{4}{3}a^{6}-\frac{8}{27}a^{9}+6a^{4}+\frac{3}{2}a^{5}+\frac{1}{8}a^{6}-\frac{1}{3}\left(-a\right)^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
Combine -2a^{3} and 8a^{3} to get 6a^{3}.
1+6a^{3}+\frac{35}{24}a^{6}-\frac{8}{27}a^{9}+6a^{4}+\frac{3}{2}a^{5}-\frac{1}{3}\left(-a\right)^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
Combine \frac{4}{3}a^{6} and \frac{1}{8}a^{6} to get \frac{35}{24}a^{6}.
1+6a^{3}+\frac{35}{24}a^{6}-\frac{8}{27}a^{9}+6a^{4}+\frac{3}{2}a^{5}-\frac{1}{3}\left(-1\right)^{4}a^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
Expand \left(-a\right)^{4}.
1+6a^{3}+\frac{35}{24}a^{6}-\frac{8}{27}a^{9}+6a^{4}+\frac{3}{2}a^{5}-\frac{1}{3}a^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
Calculate -1 to the power of 4 and get 1.
1+6a^{3}+\frac{35}{24}a^{6}-\frac{8}{27}a^{9}+6a^{4}+\frac{3}{2}a^{5}-\frac{1}{4}a^{4}+\frac{8}{27}a^{9}-\frac{4}{3}a^{6}
Use the distributive property to multiply -\frac{1}{3}a^{4} by \frac{3}{4}-\frac{8}{9}a^{5}.
1+6a^{3}+\frac{35}{24}a^{6}-\frac{8}{27}a^{9}+\frac{23}{4}a^{4}+\frac{3}{2}a^{5}+\frac{8}{27}a^{9}-\frac{4}{3}a^{6}
Combine 6a^{4} and -\frac{1}{4}a^{4} to get \frac{23}{4}a^{4}.
1+6a^{3}+\frac{35}{24}a^{6}+\frac{23}{4}a^{4}+\frac{3}{2}a^{5}-\frac{4}{3}a^{6}
Combine -\frac{8}{27}a^{9} and \frac{8}{27}a^{9} to get 0.
1+6a^{3}+\frac{1}{8}a^{6}+\frac{23}{4}a^{4}+\frac{3}{2}a^{5}
Combine \frac{35}{24}a^{6} and -\frac{4}{3}a^{6} to get \frac{1}{8}a^{6}.
1-2a^{3}+\frac{4}{3}\left(a^{3}\right)^{2}-\frac{8}{27}\left(a^{3}\right)^{3}+\left(2a+\frac{1}{2}a^{2}\right)^{3}-\frac{1}{3}\left(-a\right)^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
Use binomial theorem \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} to expand \left(1-\frac{2}{3}a^{3}\right)^{3}.
1-2a^{3}+\frac{4}{3}a^{6}-\frac{8}{27}\left(a^{3}\right)^{3}+\left(2a+\frac{1}{2}a^{2}\right)^{3}-\frac{1}{3}\left(-a\right)^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
1-2a^{3}+\frac{4}{3}a^{6}-\frac{8}{27}a^{9}+\left(2a+\frac{1}{2}a^{2}\right)^{3}-\frac{1}{3}\left(-a\right)^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
1-2a^{3}+\frac{4}{3}a^{6}-\frac{8}{27}a^{9}+8a^{3}+6a^{2}a^{2}+\frac{3}{2}a\left(a^{2}\right)^{2}+\frac{1}{8}\left(a^{2}\right)^{3}-\frac{1}{3}\left(-a\right)^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
Use binomial theorem \left(p+q\right)^{3}=p^{3}+3p^{2}q+3pq^{2}+q^{3} to expand \left(2a+\frac{1}{2}a^{2}\right)^{3}.
1-2a^{3}+\frac{4}{3}a^{6}-\frac{8}{27}a^{9}+8a^{3}+6a^{4}+\frac{3}{2}a\left(a^{2}\right)^{2}+\frac{1}{8}\left(a^{2}\right)^{3}-\frac{1}{3}\left(-a\right)^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
1-2a^{3}+\frac{4}{3}a^{6}-\frac{8}{27}a^{9}+8a^{3}+6a^{4}+\frac{3}{2}aa^{4}+\frac{1}{8}\left(a^{2}\right)^{3}-\frac{1}{3}\left(-a\right)^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
1-2a^{3}+\frac{4}{3}a^{6}-\frac{8}{27}a^{9}+8a^{3}+6a^{4}+\frac{3}{2}a^{5}+\frac{1}{8}\left(a^{2}\right)^{3}-\frac{1}{3}\left(-a\right)^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
To multiply powers of the same base, add their exponents. Add 1 and 4 to get 5.
1-2a^{3}+\frac{4}{3}a^{6}-\frac{8}{27}a^{9}+8a^{3}+6a^{4}+\frac{3}{2}a^{5}+\frac{1}{8}a^{6}-\frac{1}{3}\left(-a\right)^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
1+6a^{3}+\frac{4}{3}a^{6}-\frac{8}{27}a^{9}+6a^{4}+\frac{3}{2}a^{5}+\frac{1}{8}a^{6}-\frac{1}{3}\left(-a\right)^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
Combine -2a^{3} and 8a^{3} to get 6a^{3}.
1+6a^{3}+\frac{35}{24}a^{6}-\frac{8}{27}a^{9}+6a^{4}+\frac{3}{2}a^{5}-\frac{1}{3}\left(-a\right)^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
Combine \frac{4}{3}a^{6} and \frac{1}{8}a^{6} to get \frac{35}{24}a^{6}.
1+6a^{3}+\frac{35}{24}a^{6}-\frac{8}{27}a^{9}+6a^{4}+\frac{3}{2}a^{5}-\frac{1}{3}\left(-1\right)^{4}a^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
Expand \left(-a\right)^{4}.
1+6a^{3}+\frac{35}{24}a^{6}-\frac{8}{27}a^{9}+6a^{4}+\frac{3}{2}a^{5}-\frac{1}{3}a^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
Calculate -1 to the power of 4 and get 1.
1+6a^{3}+\frac{35}{24}a^{6}-\frac{8}{27}a^{9}+6a^{4}+\frac{3}{2}a^{5}-\frac{1}{4}a^{4}+\frac{8}{27}a^{9}-\frac{4}{3}a^{6}
Use the distributive property to multiply -\frac{1}{3}a^{4} by \frac{3}{4}-\frac{8}{9}a^{5}.
1+6a^{3}+\frac{35}{24}a^{6}-\frac{8}{27}a^{9}+\frac{23}{4}a^{4}+\frac{3}{2}a^{5}+\frac{8}{27}a^{9}-\frac{4}{3}a^{6}
Combine 6a^{4} and -\frac{1}{4}a^{4} to get \frac{23}{4}a^{4}.
1+6a^{3}+\frac{35}{24}a^{6}+\frac{23}{4}a^{4}+\frac{3}{2}a^{5}-\frac{4}{3}a^{6}
Combine -\frac{8}{27}a^{9} and \frac{8}{27}a^{9} to get 0.
1+6a^{3}+\frac{1}{8}a^{6}+\frac{23}{4}a^{4}+\frac{3}{2}a^{5}
Combine \frac{35}{24}a^{6} and -\frac{4}{3}a^{6} to get \frac{1}{8}a^{6}.