Evaluate
\frac{a^{6}}{8}+\frac{3a^{5}}{2}+\frac{23a^{4}}{4}+6a^{3}+1
Expand
\frac{a^{6}}{8}+\frac{3a^{5}}{2}+\frac{23a^{4}}{4}+6a^{3}+1
Share
Copied to clipboard
1-2a^{3}+\frac{4}{3}\left(a^{3}\right)^{2}-\frac{8}{27}\left(a^{3}\right)^{3}+\left(2a+\frac{1}{2}a^{2}\right)^{3}-\frac{1}{3}\left(-a\right)^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
Use binomial theorem \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} to expand \left(1-\frac{2}{3}a^{3}\right)^{3}.
1-2a^{3}+\frac{4}{3}a^{6}-\frac{8}{27}\left(a^{3}\right)^{3}+\left(2a+\frac{1}{2}a^{2}\right)^{3}-\frac{1}{3}\left(-a\right)^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
1-2a^{3}+\frac{4}{3}a^{6}-\frac{8}{27}a^{9}+\left(2a+\frac{1}{2}a^{2}\right)^{3}-\frac{1}{3}\left(-a\right)^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
1-2a^{3}+\frac{4}{3}a^{6}-\frac{8}{27}a^{9}+8a^{3}+6a^{2}a^{2}+\frac{3}{2}a\left(a^{2}\right)^{2}+\frac{1}{8}\left(a^{2}\right)^{3}-\frac{1}{3}\left(-a\right)^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
Use binomial theorem \left(p+q\right)^{3}=p^{3}+3p^{2}q+3pq^{2}+q^{3} to expand \left(2a+\frac{1}{2}a^{2}\right)^{3}.
1-2a^{3}+\frac{4}{3}a^{6}-\frac{8}{27}a^{9}+8a^{3}+6a^{4}+\frac{3}{2}a\left(a^{2}\right)^{2}+\frac{1}{8}\left(a^{2}\right)^{3}-\frac{1}{3}\left(-a\right)^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
1-2a^{3}+\frac{4}{3}a^{6}-\frac{8}{27}a^{9}+8a^{3}+6a^{4}+\frac{3}{2}aa^{4}+\frac{1}{8}\left(a^{2}\right)^{3}-\frac{1}{3}\left(-a\right)^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
1-2a^{3}+\frac{4}{3}a^{6}-\frac{8}{27}a^{9}+8a^{3}+6a^{4}+\frac{3}{2}a^{5}+\frac{1}{8}\left(a^{2}\right)^{3}-\frac{1}{3}\left(-a\right)^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
To multiply powers of the same base, add their exponents. Add 1 and 4 to get 5.
1-2a^{3}+\frac{4}{3}a^{6}-\frac{8}{27}a^{9}+8a^{3}+6a^{4}+\frac{3}{2}a^{5}+\frac{1}{8}a^{6}-\frac{1}{3}\left(-a\right)^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
1+6a^{3}+\frac{4}{3}a^{6}-\frac{8}{27}a^{9}+6a^{4}+\frac{3}{2}a^{5}+\frac{1}{8}a^{6}-\frac{1}{3}\left(-a\right)^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
Combine -2a^{3} and 8a^{3} to get 6a^{3}.
1+6a^{3}+\frac{35}{24}a^{6}-\frac{8}{27}a^{9}+6a^{4}+\frac{3}{2}a^{5}-\frac{1}{3}\left(-a\right)^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
Combine \frac{4}{3}a^{6} and \frac{1}{8}a^{6} to get \frac{35}{24}a^{6}.
1+6a^{3}+\frac{35}{24}a^{6}-\frac{8}{27}a^{9}+6a^{4}+\frac{3}{2}a^{5}-\frac{1}{3}\left(-1\right)^{4}a^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
Expand \left(-a\right)^{4}.
1+6a^{3}+\frac{35}{24}a^{6}-\frac{8}{27}a^{9}+6a^{4}+\frac{3}{2}a^{5}-\frac{1}{3}a^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
Calculate -1 to the power of 4 and get 1.
1+6a^{3}+\frac{35}{24}a^{6}-\frac{8}{27}a^{9}+6a^{4}+\frac{3}{2}a^{5}-\frac{1}{4}a^{4}+\frac{8}{27}a^{9}-\frac{4}{3}a^{6}
Use the distributive property to multiply -\frac{1}{3}a^{4} by \frac{3}{4}-\frac{8}{9}a^{5}.
1+6a^{3}+\frac{35}{24}a^{6}-\frac{8}{27}a^{9}+\frac{23}{4}a^{4}+\frac{3}{2}a^{5}+\frac{8}{27}a^{9}-\frac{4}{3}a^{6}
Combine 6a^{4} and -\frac{1}{4}a^{4} to get \frac{23}{4}a^{4}.
1+6a^{3}+\frac{35}{24}a^{6}+\frac{23}{4}a^{4}+\frac{3}{2}a^{5}-\frac{4}{3}a^{6}
Combine -\frac{8}{27}a^{9} and \frac{8}{27}a^{9} to get 0.
1+6a^{3}+\frac{1}{8}a^{6}+\frac{23}{4}a^{4}+\frac{3}{2}a^{5}
Combine \frac{35}{24}a^{6} and -\frac{4}{3}a^{6} to get \frac{1}{8}a^{6}.
1-2a^{3}+\frac{4}{3}\left(a^{3}\right)^{2}-\frac{8}{27}\left(a^{3}\right)^{3}+\left(2a+\frac{1}{2}a^{2}\right)^{3}-\frac{1}{3}\left(-a\right)^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
Use binomial theorem \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} to expand \left(1-\frac{2}{3}a^{3}\right)^{3}.
1-2a^{3}+\frac{4}{3}a^{6}-\frac{8}{27}\left(a^{3}\right)^{3}+\left(2a+\frac{1}{2}a^{2}\right)^{3}-\frac{1}{3}\left(-a\right)^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
1-2a^{3}+\frac{4}{3}a^{6}-\frac{8}{27}a^{9}+\left(2a+\frac{1}{2}a^{2}\right)^{3}-\frac{1}{3}\left(-a\right)^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
1-2a^{3}+\frac{4}{3}a^{6}-\frac{8}{27}a^{9}+8a^{3}+6a^{2}a^{2}+\frac{3}{2}a\left(a^{2}\right)^{2}+\frac{1}{8}\left(a^{2}\right)^{3}-\frac{1}{3}\left(-a\right)^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
Use binomial theorem \left(p+q\right)^{3}=p^{3}+3p^{2}q+3pq^{2}+q^{3} to expand \left(2a+\frac{1}{2}a^{2}\right)^{3}.
1-2a^{3}+\frac{4}{3}a^{6}-\frac{8}{27}a^{9}+8a^{3}+6a^{4}+\frac{3}{2}a\left(a^{2}\right)^{2}+\frac{1}{8}\left(a^{2}\right)^{3}-\frac{1}{3}\left(-a\right)^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
1-2a^{3}+\frac{4}{3}a^{6}-\frac{8}{27}a^{9}+8a^{3}+6a^{4}+\frac{3}{2}aa^{4}+\frac{1}{8}\left(a^{2}\right)^{3}-\frac{1}{3}\left(-a\right)^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
1-2a^{3}+\frac{4}{3}a^{6}-\frac{8}{27}a^{9}+8a^{3}+6a^{4}+\frac{3}{2}a^{5}+\frac{1}{8}\left(a^{2}\right)^{3}-\frac{1}{3}\left(-a\right)^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
To multiply powers of the same base, add their exponents. Add 1 and 4 to get 5.
1-2a^{3}+\frac{4}{3}a^{6}-\frac{8}{27}a^{9}+8a^{3}+6a^{4}+\frac{3}{2}a^{5}+\frac{1}{8}a^{6}-\frac{1}{3}\left(-a\right)^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
1+6a^{3}+\frac{4}{3}a^{6}-\frac{8}{27}a^{9}+6a^{4}+\frac{3}{2}a^{5}+\frac{1}{8}a^{6}-\frac{1}{3}\left(-a\right)^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
Combine -2a^{3} and 8a^{3} to get 6a^{3}.
1+6a^{3}+\frac{35}{24}a^{6}-\frac{8}{27}a^{9}+6a^{4}+\frac{3}{2}a^{5}-\frac{1}{3}\left(-a\right)^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
Combine \frac{4}{3}a^{6} and \frac{1}{8}a^{6} to get \frac{35}{24}a^{6}.
1+6a^{3}+\frac{35}{24}a^{6}-\frac{8}{27}a^{9}+6a^{4}+\frac{3}{2}a^{5}-\frac{1}{3}\left(-1\right)^{4}a^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
Expand \left(-a\right)^{4}.
1+6a^{3}+\frac{35}{24}a^{6}-\frac{8}{27}a^{9}+6a^{4}+\frac{3}{2}a^{5}-\frac{1}{3}a^{4}\left(\frac{3}{4}-\frac{8}{9}a^{5}\right)-\frac{4}{3}a^{6}
Calculate -1 to the power of 4 and get 1.
1+6a^{3}+\frac{35}{24}a^{6}-\frac{8}{27}a^{9}+6a^{4}+\frac{3}{2}a^{5}-\frac{1}{4}a^{4}+\frac{8}{27}a^{9}-\frac{4}{3}a^{6}
Use the distributive property to multiply -\frac{1}{3}a^{4} by \frac{3}{4}-\frac{8}{9}a^{5}.
1+6a^{3}+\frac{35}{24}a^{6}-\frac{8}{27}a^{9}+\frac{23}{4}a^{4}+\frac{3}{2}a^{5}+\frac{8}{27}a^{9}-\frac{4}{3}a^{6}
Combine 6a^{4} and -\frac{1}{4}a^{4} to get \frac{23}{4}a^{4}.
1+6a^{3}+\frac{35}{24}a^{6}+\frac{23}{4}a^{4}+\frac{3}{2}a^{5}-\frac{4}{3}a^{6}
Combine -\frac{8}{27}a^{9} and \frac{8}{27}a^{9} to get 0.
1+6a^{3}+\frac{1}{8}a^{6}+\frac{23}{4}a^{4}+\frac{3}{2}a^{5}
Combine \frac{35}{24}a^{6} and -\frac{4}{3}a^{6} to get \frac{1}{8}a^{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}