Evaluate
\frac{65}{2}-\frac{45}{y}
Expand
\frac{65}{2}-\frac{45}{y}
Graph
Share
Copied to clipboard
\frac{1-\frac{1}{y}-\frac{5}{18}}{\frac{1}{45}}
Reduce the fraction \frac{10}{36} to lowest terms by extracting and canceling out 2.
\frac{\frac{18}{18}-\frac{1}{y}-\frac{5}{18}}{\frac{1}{45}}
Convert 1 to fraction \frac{18}{18}.
\frac{\frac{18-5}{18}-\frac{1}{y}}{\frac{1}{45}}
Since \frac{18}{18} and \frac{5}{18} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{13}{18}-\frac{1}{y}}{\frac{1}{45}}
Subtract 5 from 18 to get 13.
\frac{\frac{13y}{18y}-\frac{18}{18y}}{\frac{1}{45}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 18 and y is 18y. Multiply \frac{13}{18} times \frac{y}{y}. Multiply \frac{1}{y} times \frac{18}{18}.
\frac{\frac{13y-18}{18y}}{\frac{1}{45}}
Since \frac{13y}{18y} and \frac{18}{18y} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(13y-18\right)\times 45}{18y}
Divide \frac{13y-18}{18y} by \frac{1}{45} by multiplying \frac{13y-18}{18y} by the reciprocal of \frac{1}{45}.
\frac{5\left(13y-18\right)}{2y}
Cancel out 9 in both numerator and denominator.
\frac{65y-90}{2y}
Use the distributive property to multiply 5 by 13y-18.
\frac{1-\frac{1}{y}-\frac{5}{18}}{\frac{1}{45}}
Reduce the fraction \frac{10}{36} to lowest terms by extracting and canceling out 2.
\frac{\frac{18}{18}-\frac{1}{y}-\frac{5}{18}}{\frac{1}{45}}
Convert 1 to fraction \frac{18}{18}.
\frac{\frac{18-5}{18}-\frac{1}{y}}{\frac{1}{45}}
Since \frac{18}{18} and \frac{5}{18} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{13}{18}-\frac{1}{y}}{\frac{1}{45}}
Subtract 5 from 18 to get 13.
\frac{\frac{13y}{18y}-\frac{18}{18y}}{\frac{1}{45}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 18 and y is 18y. Multiply \frac{13}{18} times \frac{y}{y}. Multiply \frac{1}{y} times \frac{18}{18}.
\frac{\frac{13y-18}{18y}}{\frac{1}{45}}
Since \frac{13y}{18y} and \frac{18}{18y} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(13y-18\right)\times 45}{18y}
Divide \frac{13y-18}{18y} by \frac{1}{45} by multiplying \frac{13y-18}{18y} by the reciprocal of \frac{1}{45}.
\frac{5\left(13y-18\right)}{2y}
Cancel out 9 in both numerator and denominator.
\frac{65y-90}{2y}
Use the distributive property to multiply 5 by 13y-18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}