Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

1-\frac{1}{m+2}+\frac{\left(m+1\right)^{2}}{2\left(m+1\right)}
Factor the expressions that are not already factored in \frac{m^{2}+2m+1}{2m+2}.
1-\frac{1}{m+2}+\frac{m+1}{2}
Cancel out m+1 in both numerator and denominator.
\frac{m+2}{m+2}-\frac{1}{m+2}+\frac{m+1}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{m+2}{m+2}.
\frac{m+2-1}{m+2}+\frac{m+1}{2}
Since \frac{m+2}{m+2} and \frac{1}{m+2} have the same denominator, subtract them by subtracting their numerators.
\frac{m+1}{m+2}+\frac{m+1}{2}
Combine like terms in m+2-1.
\frac{2\left(m+1\right)}{2\left(m+2\right)}+\frac{\left(m+1\right)\left(m+2\right)}{2\left(m+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m+2 and 2 is 2\left(m+2\right). Multiply \frac{m+1}{m+2} times \frac{2}{2}. Multiply \frac{m+1}{2} times \frac{m+2}{m+2}.
\frac{2\left(m+1\right)+\left(m+1\right)\left(m+2\right)}{2\left(m+2\right)}
Since \frac{2\left(m+1\right)}{2\left(m+2\right)} and \frac{\left(m+1\right)\left(m+2\right)}{2\left(m+2\right)} have the same denominator, add them by adding their numerators.
\frac{2m+2+m^{2}+2m+m+2}{2\left(m+2\right)}
Do the multiplications in 2\left(m+1\right)+\left(m+1\right)\left(m+2\right).
\frac{5m+4+m^{2}}{2\left(m+2\right)}
Combine like terms in 2m+2+m^{2}+2m+m+2.
\frac{5m+4+m^{2}}{2m+4}
Expand 2\left(m+2\right).
1-\frac{1}{m+2}+\frac{\left(m+1\right)^{2}}{2\left(m+1\right)}
Factor the expressions that are not already factored in \frac{m^{2}+2m+1}{2m+2}.
1-\frac{1}{m+2}+\frac{m+1}{2}
Cancel out m+1 in both numerator and denominator.
\frac{m+2}{m+2}-\frac{1}{m+2}+\frac{m+1}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{m+2}{m+2}.
\frac{m+2-1}{m+2}+\frac{m+1}{2}
Since \frac{m+2}{m+2} and \frac{1}{m+2} have the same denominator, subtract them by subtracting their numerators.
\frac{m+1}{m+2}+\frac{m+1}{2}
Combine like terms in m+2-1.
\frac{2\left(m+1\right)}{2\left(m+2\right)}+\frac{\left(m+1\right)\left(m+2\right)}{2\left(m+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m+2 and 2 is 2\left(m+2\right). Multiply \frac{m+1}{m+2} times \frac{2}{2}. Multiply \frac{m+1}{2} times \frac{m+2}{m+2}.
\frac{2\left(m+1\right)+\left(m+1\right)\left(m+2\right)}{2\left(m+2\right)}
Since \frac{2\left(m+1\right)}{2\left(m+2\right)} and \frac{\left(m+1\right)\left(m+2\right)}{2\left(m+2\right)} have the same denominator, add them by adding their numerators.
\frac{2m+2+m^{2}+2m+m+2}{2\left(m+2\right)}
Do the multiplications in 2\left(m+1\right)+\left(m+1\right)\left(m+2\right).
\frac{5m+4+m^{2}}{2\left(m+2\right)}
Combine like terms in 2m+2+m^{2}+2m+m+2.
\frac{5m+4+m^{2}}{2m+4}
Expand 2\left(m+2\right).