Evaluate
\frac{\left(m+1\right)\left(m+4\right)}{2\left(m+2\right)}
Expand
\frac{m^{2}+5m+4}{2\left(m+2\right)}
Share
Copied to clipboard
1-\frac{1}{m+2}+\frac{\left(m+1\right)^{2}}{2\left(m+1\right)}
Factor the expressions that are not already factored in \frac{m^{2}+2m+1}{2m+2}.
1-\frac{1}{m+2}+\frac{m+1}{2}
Cancel out m+1 in both numerator and denominator.
\frac{m+2}{m+2}-\frac{1}{m+2}+\frac{m+1}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{m+2}{m+2}.
\frac{m+2-1}{m+2}+\frac{m+1}{2}
Since \frac{m+2}{m+2} and \frac{1}{m+2} have the same denominator, subtract them by subtracting their numerators.
\frac{m+1}{m+2}+\frac{m+1}{2}
Combine like terms in m+2-1.
\frac{2\left(m+1\right)}{2\left(m+2\right)}+\frac{\left(m+1\right)\left(m+2\right)}{2\left(m+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m+2 and 2 is 2\left(m+2\right). Multiply \frac{m+1}{m+2} times \frac{2}{2}. Multiply \frac{m+1}{2} times \frac{m+2}{m+2}.
\frac{2\left(m+1\right)+\left(m+1\right)\left(m+2\right)}{2\left(m+2\right)}
Since \frac{2\left(m+1\right)}{2\left(m+2\right)} and \frac{\left(m+1\right)\left(m+2\right)}{2\left(m+2\right)} have the same denominator, add them by adding their numerators.
\frac{2m+2+m^{2}+2m+m+2}{2\left(m+2\right)}
Do the multiplications in 2\left(m+1\right)+\left(m+1\right)\left(m+2\right).
\frac{5m+4+m^{2}}{2\left(m+2\right)}
Combine like terms in 2m+2+m^{2}+2m+m+2.
\frac{5m+4+m^{2}}{2m+4}
Expand 2\left(m+2\right).
1-\frac{1}{m+2}+\frac{\left(m+1\right)^{2}}{2\left(m+1\right)}
Factor the expressions that are not already factored in \frac{m^{2}+2m+1}{2m+2}.
1-\frac{1}{m+2}+\frac{m+1}{2}
Cancel out m+1 in both numerator and denominator.
\frac{m+2}{m+2}-\frac{1}{m+2}+\frac{m+1}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{m+2}{m+2}.
\frac{m+2-1}{m+2}+\frac{m+1}{2}
Since \frac{m+2}{m+2} and \frac{1}{m+2} have the same denominator, subtract them by subtracting their numerators.
\frac{m+1}{m+2}+\frac{m+1}{2}
Combine like terms in m+2-1.
\frac{2\left(m+1\right)}{2\left(m+2\right)}+\frac{\left(m+1\right)\left(m+2\right)}{2\left(m+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m+2 and 2 is 2\left(m+2\right). Multiply \frac{m+1}{m+2} times \frac{2}{2}. Multiply \frac{m+1}{2} times \frac{m+2}{m+2}.
\frac{2\left(m+1\right)+\left(m+1\right)\left(m+2\right)}{2\left(m+2\right)}
Since \frac{2\left(m+1\right)}{2\left(m+2\right)} and \frac{\left(m+1\right)\left(m+2\right)}{2\left(m+2\right)} have the same denominator, add them by adding their numerators.
\frac{2m+2+m^{2}+2m+m+2}{2\left(m+2\right)}
Do the multiplications in 2\left(m+1\right)+\left(m+1\right)\left(m+2\right).
\frac{5m+4+m^{2}}{2\left(m+2\right)}
Combine like terms in 2m+2+m^{2}+2m+m+2.
\frac{5m+4+m^{2}}{2m+4}
Expand 2\left(m+2\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}