Evaluate
\frac{11}{48}\approx 0.229166667
Factor
\frac{11}{2 ^ {4} \cdot 3} = 0.22916666666666666
Share
Copied to clipboard
\left(\frac{2}{2}-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{1}{12}\right)
Convert 1 to fraction \frac{2}{2}.
\frac{2-1}{2}\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{1}{12}\right)
Since \frac{2}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{1}{12}\right)
Subtract 1 from 2 to get 1.
\frac{1}{2}\left(\frac{3}{3}-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{1}{12}\right)
Convert 1 to fraction \frac{3}{3}.
\frac{1}{2}\times \frac{3-1}{3}\left(1-\frac{1}{4}\right)\left(1-\frac{1}{12}\right)
Since \frac{3}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}\times \frac{2}{3}\left(1-\frac{1}{4}\right)\left(1-\frac{1}{12}\right)
Subtract 1 from 3 to get 2.
\frac{1\times 2}{2\times 3}\left(1-\frac{1}{4}\right)\left(1-\frac{1}{12}\right)
Multiply \frac{1}{2} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3}\left(1-\frac{1}{4}\right)\left(1-\frac{1}{12}\right)
Cancel out 2 in both numerator and denominator.
\frac{1}{3}\left(\frac{4}{4}-\frac{1}{4}\right)\left(1-\frac{1}{12}\right)
Convert 1 to fraction \frac{4}{4}.
\frac{1}{3}\times \frac{4-1}{4}\left(1-\frac{1}{12}\right)
Since \frac{4}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{3}\times \frac{3}{4}\left(1-\frac{1}{12}\right)
Subtract 1 from 4 to get 3.
\frac{1\times 3}{3\times 4}\left(1-\frac{1}{12}\right)
Multiply \frac{1}{3} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{4}\left(1-\frac{1}{12}\right)
Cancel out 3 in both numerator and denominator.
\frac{1}{4}\left(\frac{12}{12}-\frac{1}{12}\right)
Convert 1 to fraction \frac{12}{12}.
\frac{1}{4}\times \frac{12-1}{12}
Since \frac{12}{12} and \frac{1}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{4}\times \frac{11}{12}
Subtract 1 from 12 to get 11.
\frac{1\times 11}{4\times 12}
Multiply \frac{1}{4} times \frac{11}{12} by multiplying numerator times numerator and denominator times denominator.
\frac{11}{48}
Do the multiplications in the fraction \frac{1\times 11}{4\times 12}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}