Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}\left(1+\frac{x+x^{2}}{1-x}\right)\left(1-\frac{2x^{2}}{1+x^{2}}\right)
Subtract \frac{1}{2} from 1 to get \frac{1}{2}.
\frac{1}{2}\left(\frac{1-x}{1-x}+\frac{x+x^{2}}{1-x}\right)\left(1-\frac{2x^{2}}{1+x^{2}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{1-x}{1-x}.
\frac{1}{2}\times \frac{1-x+x+x^{2}}{1-x}\left(1-\frac{2x^{2}}{1+x^{2}}\right)
Since \frac{1-x}{1-x} and \frac{x+x^{2}}{1-x} have the same denominator, add them by adding their numerators.
\frac{1}{2}\times \frac{1+x^{2}}{1-x}\left(1-\frac{2x^{2}}{1+x^{2}}\right)
Combine like terms in 1-x+x+x^{2}.
\frac{1}{2}\times \frac{1+x^{2}}{1-x}\left(\frac{1+x^{2}}{1+x^{2}}-\frac{2x^{2}}{1+x^{2}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{1+x^{2}}{1+x^{2}}.
\frac{1}{2}\times \frac{1+x^{2}}{1-x}\times \frac{1+x^{2}-2x^{2}}{1+x^{2}}
Since \frac{1+x^{2}}{1+x^{2}} and \frac{2x^{2}}{1+x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}\times \frac{1+x^{2}}{1-x}\times \frac{1-x^{2}}{1+x^{2}}
Combine like terms in 1+x^{2}-2x^{2}.
\frac{1+x^{2}}{2\left(1-x\right)}\times \frac{1-x^{2}}{1+x^{2}}
Multiply \frac{1}{2} times \frac{1+x^{2}}{1-x} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(1+x^{2}\right)\left(1-x^{2}\right)}{2\left(1-x\right)\left(1+x^{2}\right)}
Multiply \frac{1+x^{2}}{2\left(1-x\right)} times \frac{1-x^{2}}{1+x^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{-x^{2}+1}{2\left(-x+1\right)}
Cancel out x^{2}+1 in both numerator and denominator.
\frac{\left(x-1\right)\left(-x-1\right)}{2\left(-x+1\right)}
Factor the expressions that are not already factored.
\frac{-\left(-x-1\right)\left(-x+1\right)}{2\left(-x+1\right)}
Extract the negative sign in -1+x.
\frac{-\left(-x-1\right)}{2}
Cancel out -x+1 in both numerator and denominator.
\frac{x+1}{2}
Expand the expression.
\frac{1}{2}\left(1+\frac{x+x^{2}}{1-x}\right)\left(1-\frac{2x^{2}}{1+x^{2}}\right)
Subtract \frac{1}{2} from 1 to get \frac{1}{2}.
\frac{1}{2}\left(\frac{1-x}{1-x}+\frac{x+x^{2}}{1-x}\right)\left(1-\frac{2x^{2}}{1+x^{2}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{1-x}{1-x}.
\frac{1}{2}\times \frac{1-x+x+x^{2}}{1-x}\left(1-\frac{2x^{2}}{1+x^{2}}\right)
Since \frac{1-x}{1-x} and \frac{x+x^{2}}{1-x} have the same denominator, add them by adding their numerators.
\frac{1}{2}\times \frac{1+x^{2}}{1-x}\left(1-\frac{2x^{2}}{1+x^{2}}\right)
Combine like terms in 1-x+x+x^{2}.
\frac{1}{2}\times \frac{1+x^{2}}{1-x}\left(\frac{1+x^{2}}{1+x^{2}}-\frac{2x^{2}}{1+x^{2}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{1+x^{2}}{1+x^{2}}.
\frac{1}{2}\times \frac{1+x^{2}}{1-x}\times \frac{1+x^{2}-2x^{2}}{1+x^{2}}
Since \frac{1+x^{2}}{1+x^{2}} and \frac{2x^{2}}{1+x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}\times \frac{1+x^{2}}{1-x}\times \frac{1-x^{2}}{1+x^{2}}
Combine like terms in 1+x^{2}-2x^{2}.
\frac{1+x^{2}}{2\left(1-x\right)}\times \frac{1-x^{2}}{1+x^{2}}
Multiply \frac{1}{2} times \frac{1+x^{2}}{1-x} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(1+x^{2}\right)\left(1-x^{2}\right)}{2\left(1-x\right)\left(1+x^{2}\right)}
Multiply \frac{1+x^{2}}{2\left(1-x\right)} times \frac{1-x^{2}}{1+x^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{-x^{2}+1}{2\left(-x+1\right)}
Cancel out x^{2}+1 in both numerator and denominator.
\frac{\left(x-1\right)\left(-x-1\right)}{2\left(-x+1\right)}
Factor the expressions that are not already factored.
\frac{-\left(-x-1\right)\left(-x+1\right)}{2\left(-x+1\right)}
Extract the negative sign in -1+x.
\frac{-\left(-x-1\right)}{2}
Cancel out -x+1 in both numerator and denominator.
\frac{x+1}{2}
Expand the expression.