Evaluate
-\frac{1981}{4394}\approx -0.450842057
Factor
-\frac{1981}{4394} = -0.4508420573509331
Share
Copied to clipboard
\frac{\left(\frac{1}{2}\right)^{4}}{\left(\frac{\left(\frac{3}{7}+\frac{1}{6}-\frac{5}{14}\right)\left(5+\frac{1}{4}\right)-\frac{1}{2}}{\left(\frac{3}{4}\right)^{2}}-\frac{1}{4}\right)^{3}}-\frac{1}{2}
Subtract \frac{1}{2} from 1 to get \frac{1}{2}.
\frac{\frac{1}{16}}{\left(\frac{\left(\frac{3}{7}+\frac{1}{6}-\frac{5}{14}\right)\left(5+\frac{1}{4}\right)-\frac{1}{2}}{\left(\frac{3}{4}\right)^{2}}-\frac{1}{4}\right)^{3}}-\frac{1}{2}
Calculate \frac{1}{2} to the power of 4 and get \frac{1}{16}.
\frac{\frac{1}{16}}{\left(\frac{\left(\frac{25}{42}-\frac{5}{14}\right)\left(5+\frac{1}{4}\right)-\frac{1}{2}}{\left(\frac{3}{4}\right)^{2}}-\frac{1}{4}\right)^{3}}-\frac{1}{2}
Add \frac{3}{7} and \frac{1}{6} to get \frac{25}{42}.
\frac{\frac{1}{16}}{\left(\frac{\frac{5}{21}\left(5+\frac{1}{4}\right)-\frac{1}{2}}{\left(\frac{3}{4}\right)^{2}}-\frac{1}{4}\right)^{3}}-\frac{1}{2}
Subtract \frac{5}{14} from \frac{25}{42} to get \frac{5}{21}.
\frac{\frac{1}{16}}{\left(\frac{\frac{5}{21}\times \frac{21}{4}-\frac{1}{2}}{\left(\frac{3}{4}\right)^{2}}-\frac{1}{4}\right)^{3}}-\frac{1}{2}
Add 5 and \frac{1}{4} to get \frac{21}{4}.
\frac{\frac{1}{16}}{\left(\frac{\frac{5}{4}-\frac{1}{2}}{\left(\frac{3}{4}\right)^{2}}-\frac{1}{4}\right)^{3}}-\frac{1}{2}
Multiply \frac{5}{21} and \frac{21}{4} to get \frac{5}{4}.
\frac{\frac{1}{16}}{\left(\frac{\frac{3}{4}}{\left(\frac{3}{4}\right)^{2}}-\frac{1}{4}\right)^{3}}-\frac{1}{2}
Subtract \frac{1}{2} from \frac{5}{4} to get \frac{3}{4}.
\frac{\frac{1}{16}}{\left(\frac{\frac{3}{4}}{\frac{9}{16}}-\frac{1}{4}\right)^{3}}-\frac{1}{2}
Calculate \frac{3}{4} to the power of 2 and get \frac{9}{16}.
\frac{\frac{1}{16}}{\left(\frac{3}{4}\times \frac{16}{9}-\frac{1}{4}\right)^{3}}-\frac{1}{2}
Divide \frac{3}{4} by \frac{9}{16} by multiplying \frac{3}{4} by the reciprocal of \frac{9}{16}.
\frac{\frac{1}{16}}{\left(\frac{4}{3}-\frac{1}{4}\right)^{3}}-\frac{1}{2}
Multiply \frac{3}{4} and \frac{16}{9} to get \frac{4}{3}.
\frac{\frac{1}{16}}{\left(\frac{13}{12}\right)^{3}}-\frac{1}{2}
Subtract \frac{1}{4} from \frac{4}{3} to get \frac{13}{12}.
\frac{\frac{1}{16}}{\frac{2197}{1728}}-\frac{1}{2}
Calculate \frac{13}{12} to the power of 3 and get \frac{2197}{1728}.
\frac{1}{16}\times \frac{1728}{2197}-\frac{1}{2}
Divide \frac{1}{16} by \frac{2197}{1728} by multiplying \frac{1}{16} by the reciprocal of \frac{2197}{1728}.
\frac{108}{2197}-\frac{1}{2}
Multiply \frac{1}{16} and \frac{1728}{2197} to get \frac{108}{2197}.
-\frac{1981}{4394}
Subtract \frac{1}{2} from \frac{108}{2197} to get -\frac{1981}{4394}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}