Evaluate
\frac{85}{88}\approx 0.965909091
Factor
\frac{5 \cdot 17}{2 ^ {3} \cdot 11} = 0.9659090909090909
Share
Copied to clipboard
\left(1-\frac{1}{121}\right)\left(1-\frac{1}{12^{2}}\right)\left(1-\frac{1}{13^{2}}\right)\left(1-\frac{1}{14^{2}}\right)\left(1-\frac{1}{15^{2}}\right)\left(1-\frac{1}{16^{2}}\right)
Calculate 11 to the power of 2 and get 121.
\left(\frac{121}{121}-\frac{1}{121}\right)\left(1-\frac{1}{12^{2}}\right)\left(1-\frac{1}{13^{2}}\right)\left(1-\frac{1}{14^{2}}\right)\left(1-\frac{1}{15^{2}}\right)\left(1-\frac{1}{16^{2}}\right)
Convert 1 to fraction \frac{121}{121}.
\frac{121-1}{121}\left(1-\frac{1}{12^{2}}\right)\left(1-\frac{1}{13^{2}}\right)\left(1-\frac{1}{14^{2}}\right)\left(1-\frac{1}{15^{2}}\right)\left(1-\frac{1}{16^{2}}\right)
Since \frac{121}{121} and \frac{1}{121} have the same denominator, subtract them by subtracting their numerators.
\frac{120}{121}\left(1-\frac{1}{12^{2}}\right)\left(1-\frac{1}{13^{2}}\right)\left(1-\frac{1}{14^{2}}\right)\left(1-\frac{1}{15^{2}}\right)\left(1-\frac{1}{16^{2}}\right)
Subtract 1 from 121 to get 120.
\frac{120}{121}\left(1-\frac{1}{144}\right)\left(1-\frac{1}{13^{2}}\right)\left(1-\frac{1}{14^{2}}\right)\left(1-\frac{1}{15^{2}}\right)\left(1-\frac{1}{16^{2}}\right)
Calculate 12 to the power of 2 and get 144.
\frac{120}{121}\left(\frac{144}{144}-\frac{1}{144}\right)\left(1-\frac{1}{13^{2}}\right)\left(1-\frac{1}{14^{2}}\right)\left(1-\frac{1}{15^{2}}\right)\left(1-\frac{1}{16^{2}}\right)
Convert 1 to fraction \frac{144}{144}.
\frac{120}{121}\times \frac{144-1}{144}\left(1-\frac{1}{13^{2}}\right)\left(1-\frac{1}{14^{2}}\right)\left(1-\frac{1}{15^{2}}\right)\left(1-\frac{1}{16^{2}}\right)
Since \frac{144}{144} and \frac{1}{144} have the same denominator, subtract them by subtracting their numerators.
\frac{120}{121}\times \frac{143}{144}\left(1-\frac{1}{13^{2}}\right)\left(1-\frac{1}{14^{2}}\right)\left(1-\frac{1}{15^{2}}\right)\left(1-\frac{1}{16^{2}}\right)
Subtract 1 from 144 to get 143.
\frac{120\times 143}{121\times 144}\left(1-\frac{1}{13^{2}}\right)\left(1-\frac{1}{14^{2}}\right)\left(1-\frac{1}{15^{2}}\right)\left(1-\frac{1}{16^{2}}\right)
Multiply \frac{120}{121} times \frac{143}{144} by multiplying numerator times numerator and denominator times denominator.
\frac{17160}{17424}\left(1-\frac{1}{13^{2}}\right)\left(1-\frac{1}{14^{2}}\right)\left(1-\frac{1}{15^{2}}\right)\left(1-\frac{1}{16^{2}}\right)
Do the multiplications in the fraction \frac{120\times 143}{121\times 144}.
\frac{65}{66}\left(1-\frac{1}{13^{2}}\right)\left(1-\frac{1}{14^{2}}\right)\left(1-\frac{1}{15^{2}}\right)\left(1-\frac{1}{16^{2}}\right)
Reduce the fraction \frac{17160}{17424} to lowest terms by extracting and canceling out 264.
\frac{65}{66}\left(1-\frac{1}{169}\right)\left(1-\frac{1}{14^{2}}\right)\left(1-\frac{1}{15^{2}}\right)\left(1-\frac{1}{16^{2}}\right)
Calculate 13 to the power of 2 and get 169.
\frac{65}{66}\left(\frac{169}{169}-\frac{1}{169}\right)\left(1-\frac{1}{14^{2}}\right)\left(1-\frac{1}{15^{2}}\right)\left(1-\frac{1}{16^{2}}\right)
Convert 1 to fraction \frac{169}{169}.
\frac{65}{66}\times \frac{169-1}{169}\left(1-\frac{1}{14^{2}}\right)\left(1-\frac{1}{15^{2}}\right)\left(1-\frac{1}{16^{2}}\right)
Since \frac{169}{169} and \frac{1}{169} have the same denominator, subtract them by subtracting their numerators.
\frac{65}{66}\times \frac{168}{169}\left(1-\frac{1}{14^{2}}\right)\left(1-\frac{1}{15^{2}}\right)\left(1-\frac{1}{16^{2}}\right)
Subtract 1 from 169 to get 168.
\frac{65\times 168}{66\times 169}\left(1-\frac{1}{14^{2}}\right)\left(1-\frac{1}{15^{2}}\right)\left(1-\frac{1}{16^{2}}\right)
Multiply \frac{65}{66} times \frac{168}{169} by multiplying numerator times numerator and denominator times denominator.
\frac{10920}{11154}\left(1-\frac{1}{14^{2}}\right)\left(1-\frac{1}{15^{2}}\right)\left(1-\frac{1}{16^{2}}\right)
Do the multiplications in the fraction \frac{65\times 168}{66\times 169}.
\frac{140}{143}\left(1-\frac{1}{14^{2}}\right)\left(1-\frac{1}{15^{2}}\right)\left(1-\frac{1}{16^{2}}\right)
Reduce the fraction \frac{10920}{11154} to lowest terms by extracting and canceling out 78.
\frac{140}{143}\left(1-\frac{1}{196}\right)\left(1-\frac{1}{15^{2}}\right)\left(1-\frac{1}{16^{2}}\right)
Calculate 14 to the power of 2 and get 196.
\frac{140}{143}\left(\frac{196}{196}-\frac{1}{196}\right)\left(1-\frac{1}{15^{2}}\right)\left(1-\frac{1}{16^{2}}\right)
Convert 1 to fraction \frac{196}{196}.
\frac{140}{143}\times \frac{196-1}{196}\left(1-\frac{1}{15^{2}}\right)\left(1-\frac{1}{16^{2}}\right)
Since \frac{196}{196} and \frac{1}{196} have the same denominator, subtract them by subtracting their numerators.
\frac{140}{143}\times \frac{195}{196}\left(1-\frac{1}{15^{2}}\right)\left(1-\frac{1}{16^{2}}\right)
Subtract 1 from 196 to get 195.
\frac{140\times 195}{143\times 196}\left(1-\frac{1}{15^{2}}\right)\left(1-\frac{1}{16^{2}}\right)
Multiply \frac{140}{143} times \frac{195}{196} by multiplying numerator times numerator and denominator times denominator.
\frac{27300}{28028}\left(1-\frac{1}{15^{2}}\right)\left(1-\frac{1}{16^{2}}\right)
Do the multiplications in the fraction \frac{140\times 195}{143\times 196}.
\frac{75}{77}\left(1-\frac{1}{15^{2}}\right)\left(1-\frac{1}{16^{2}}\right)
Reduce the fraction \frac{27300}{28028} to lowest terms by extracting and canceling out 364.
\frac{75}{77}\left(1-\frac{1}{225}\right)\left(1-\frac{1}{16^{2}}\right)
Calculate 15 to the power of 2 and get 225.
\frac{75}{77}\left(\frac{225}{225}-\frac{1}{225}\right)\left(1-\frac{1}{16^{2}}\right)
Convert 1 to fraction \frac{225}{225}.
\frac{75}{77}\times \frac{225-1}{225}\left(1-\frac{1}{16^{2}}\right)
Since \frac{225}{225} and \frac{1}{225} have the same denominator, subtract them by subtracting their numerators.
\frac{75}{77}\times \frac{224}{225}\left(1-\frac{1}{16^{2}}\right)
Subtract 1 from 225 to get 224.
\frac{75\times 224}{77\times 225}\left(1-\frac{1}{16^{2}}\right)
Multiply \frac{75}{77} times \frac{224}{225} by multiplying numerator times numerator and denominator times denominator.
\frac{16800}{17325}\left(1-\frac{1}{16^{2}}\right)
Do the multiplications in the fraction \frac{75\times 224}{77\times 225}.
\frac{32}{33}\left(1-\frac{1}{16^{2}}\right)
Reduce the fraction \frac{16800}{17325} to lowest terms by extracting and canceling out 525.
\frac{32}{33}\left(1-\frac{1}{256}\right)
Calculate 16 to the power of 2 and get 256.
\frac{32}{33}\left(\frac{256}{256}-\frac{1}{256}\right)
Convert 1 to fraction \frac{256}{256}.
\frac{32}{33}\times \frac{256-1}{256}
Since \frac{256}{256} and \frac{1}{256} have the same denominator, subtract them by subtracting their numerators.
\frac{32}{33}\times \frac{255}{256}
Subtract 1 from 256 to get 255.
\frac{32\times 255}{33\times 256}
Multiply \frac{32}{33} times \frac{255}{256} by multiplying numerator times numerator and denominator times denominator.
\frac{8160}{8448}
Do the multiplications in the fraction \frac{32\times 255}{33\times 256}.
\frac{85}{88}
Reduce the fraction \frac{8160}{8448} to lowest terms by extracting and canceling out 96.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}