Evaluate
-1-\frac{1}{a}
Expand
-1-\frac{1}{a}
Share
Copied to clipboard
\left(\frac{1-a}{1-a}-\frac{1}{1-a}\right)\left(\frac{1}{a^{2}}-1\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{1-a}{1-a}.
\frac{1-a-1}{1-a}\left(\frac{1}{a^{2}}-1\right)
Since \frac{1-a}{1-a} and \frac{1}{1-a} have the same denominator, subtract them by subtracting their numerators.
\frac{-a}{1-a}\left(\frac{1}{a^{2}}-1\right)
Combine like terms in 1-a-1.
\frac{-a}{1-a}\left(\frac{1}{a^{2}}-\frac{a^{2}}{a^{2}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a^{2}}{a^{2}}.
\frac{-a}{1-a}\times \frac{1-a^{2}}{a^{2}}
Since \frac{1}{a^{2}} and \frac{a^{2}}{a^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{-a\left(1-a^{2}\right)}{\left(1-a\right)a^{2}}
Multiply \frac{-a}{1-a} times \frac{1-a^{2}}{a^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(-a^{2}+1\right)}{a\left(-a+1\right)}
Cancel out a in both numerator and denominator.
\frac{-\left(a-1\right)\left(-a-1\right)}{a\left(-a+1\right)}
Factor the expressions that are not already factored.
\frac{-\left(-1\right)\left(-a-1\right)\left(-a+1\right)}{a\left(-a+1\right)}
Extract the negative sign in -1+a.
\frac{-\left(-1\right)\left(-a-1\right)}{a}
Cancel out -a+1 in both numerator and denominator.
\frac{-a-1}{a}
Expand the expression.
\left(\frac{1-a}{1-a}-\frac{1}{1-a}\right)\left(\frac{1}{a^{2}}-1\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{1-a}{1-a}.
\frac{1-a-1}{1-a}\left(\frac{1}{a^{2}}-1\right)
Since \frac{1-a}{1-a} and \frac{1}{1-a} have the same denominator, subtract them by subtracting their numerators.
\frac{-a}{1-a}\left(\frac{1}{a^{2}}-1\right)
Combine like terms in 1-a-1.
\frac{-a}{1-a}\left(\frac{1}{a^{2}}-\frac{a^{2}}{a^{2}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a^{2}}{a^{2}}.
\frac{-a}{1-a}\times \frac{1-a^{2}}{a^{2}}
Since \frac{1}{a^{2}} and \frac{a^{2}}{a^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{-a\left(1-a^{2}\right)}{\left(1-a\right)a^{2}}
Multiply \frac{-a}{1-a} times \frac{1-a^{2}}{a^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(-a^{2}+1\right)}{a\left(-a+1\right)}
Cancel out a in both numerator and denominator.
\frac{-\left(a-1\right)\left(-a-1\right)}{a\left(-a+1\right)}
Factor the expressions that are not already factored.
\frac{-\left(-1\right)\left(-a-1\right)\left(-a+1\right)}{a\left(-a+1\right)}
Extract the negative sign in -1+a.
\frac{-\left(-1\right)\left(-a-1\right)}{a}
Cancel out -a+1 in both numerator and denominator.
\frac{-a-1}{a}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}