Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{1-a}{1-a}-\frac{1}{1-a}\right)\left(\frac{1}{a^{2}}-1\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{1-a}{1-a}.
\frac{1-a-1}{1-a}\left(\frac{1}{a^{2}}-1\right)
Since \frac{1-a}{1-a} and \frac{1}{1-a} have the same denominator, subtract them by subtracting their numerators.
\frac{-a}{1-a}\left(\frac{1}{a^{2}}-1\right)
Combine like terms in 1-a-1.
\frac{-a}{1-a}\left(\frac{1}{a^{2}}-\frac{a^{2}}{a^{2}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a^{2}}{a^{2}}.
\frac{-a}{1-a}\times \frac{1-a^{2}}{a^{2}}
Since \frac{1}{a^{2}} and \frac{a^{2}}{a^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{-a\left(1-a^{2}\right)}{\left(1-a\right)a^{2}}
Multiply \frac{-a}{1-a} times \frac{1-a^{2}}{a^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(-a^{2}+1\right)}{a\left(-a+1\right)}
Cancel out a in both numerator and denominator.
\frac{-\left(a-1\right)\left(-a-1\right)}{a\left(-a+1\right)}
Factor the expressions that are not already factored.
\frac{-\left(-1\right)\left(-a-1\right)\left(-a+1\right)}{a\left(-a+1\right)}
Extract the negative sign in -1+a.
\frac{-\left(-1\right)\left(-a-1\right)}{a}
Cancel out -a+1 in both numerator and denominator.
\frac{-a-1}{a}
Expand the expression.
\left(\frac{1-a}{1-a}-\frac{1}{1-a}\right)\left(\frac{1}{a^{2}}-1\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{1-a}{1-a}.
\frac{1-a-1}{1-a}\left(\frac{1}{a^{2}}-1\right)
Since \frac{1-a}{1-a} and \frac{1}{1-a} have the same denominator, subtract them by subtracting their numerators.
\frac{-a}{1-a}\left(\frac{1}{a^{2}}-1\right)
Combine like terms in 1-a-1.
\frac{-a}{1-a}\left(\frac{1}{a^{2}}-\frac{a^{2}}{a^{2}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a^{2}}{a^{2}}.
\frac{-a}{1-a}\times \frac{1-a^{2}}{a^{2}}
Since \frac{1}{a^{2}} and \frac{a^{2}}{a^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{-a\left(1-a^{2}\right)}{\left(1-a\right)a^{2}}
Multiply \frac{-a}{1-a} times \frac{1-a^{2}}{a^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(-a^{2}+1\right)}{a\left(-a+1\right)}
Cancel out a in both numerator and denominator.
\frac{-\left(a-1\right)\left(-a-1\right)}{a\left(-a+1\right)}
Factor the expressions that are not already factored.
\frac{-\left(-1\right)\left(-a-1\right)\left(-a+1\right)}{a\left(-a+1\right)}
Extract the negative sign in -1+a.
\frac{-\left(-1\right)\left(-a-1\right)}{a}
Cancel out -a+1 in both numerator and denominator.
\frac{-a-1}{a}
Expand the expression.