Solve for a
\left\{\begin{matrix}a=\frac{x^{5}+y^{5}}{5\left(xy\right)^{2}}\text{, }&y\neq 0\text{ and }x\neq 0\\a\in \mathrm{R}\text{, }&x=0\text{ and }y=0\end{matrix}\right.
Share
Copied to clipboard
5ax^{2}y^{2}=1x^{5}+y^{5}
Swap sides so that all variable terms are on the left hand side.
5ax^{2}y^{2}=x^{5}+y^{5}
Reorder the terms.
5x^{2}y^{2}a=x^{5}+y^{5}
The equation is in standard form.
\frac{5x^{2}y^{2}a}{5x^{2}y^{2}}=\frac{x^{5}+y^{5}}{5x^{2}y^{2}}
Divide both sides by 5x^{2}y^{2}.
a=\frac{x^{5}+y^{5}}{5x^{2}y^{2}}
Dividing by 5x^{2}y^{2} undoes the multiplication by 5x^{2}y^{2}.
a=\frac{x^{5}+y^{5}}{5\left(xy\right)^{2}}
Divide x^{5}+y^{5} by 5x^{2}y^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}