Evaluate
\frac{9\sqrt{2}}{2}+24-2\sqrt{6}-26\sqrt{3}\approx -19.568339452
Factor
\frac{9 \sqrt{2} + 48 - 4 \sqrt{6} - 52 \sqrt{3}}{2} = -19.568339451678234
Share
Copied to clipboard
\left(1+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{6}\right)-\frac{\left(2\sqrt{3}-1\right)^{2}}{2}\left(\sqrt{48}-4\sqrt{\frac{1}{8}}\right)
Use the distributive property to multiply 1 by 1+\sqrt{3}.
\sqrt{2}-\sqrt{6}+\sqrt{3}\sqrt{2}-\sqrt{3}\sqrt{6}-\frac{\left(2\sqrt{3}-1\right)^{2}}{2}\left(\sqrt{48}-4\sqrt{\frac{1}{8}}\right)
Use the distributive property to multiply 1+\sqrt{3} by \sqrt{2}-\sqrt{6}.
\sqrt{2}-\sqrt{6}+\sqrt{6}-\sqrt{3}\sqrt{6}-\frac{\left(2\sqrt{3}-1\right)^{2}}{2}\left(\sqrt{48}-4\sqrt{\frac{1}{8}}\right)
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\sqrt{2}-\sqrt{3}\sqrt{6}-\frac{\left(2\sqrt{3}-1\right)^{2}}{2}\left(\sqrt{48}-4\sqrt{\frac{1}{8}}\right)
Combine -\sqrt{6} and \sqrt{6} to get 0.
\sqrt{2}-\sqrt{3}\sqrt{3}\sqrt{2}-\frac{\left(2\sqrt{3}-1\right)^{2}}{2}\left(\sqrt{48}-4\sqrt{\frac{1}{8}}\right)
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\sqrt{2}-3\sqrt{2}-\frac{\left(2\sqrt{3}-1\right)^{2}}{2}\left(\sqrt{48}-4\sqrt{\frac{1}{8}}\right)
Multiply \sqrt{3} and \sqrt{3} to get 3.
-2\sqrt{2}-\frac{\left(2\sqrt{3}-1\right)^{2}}{2}\left(\sqrt{48}-4\sqrt{\frac{1}{8}}\right)
Combine \sqrt{2} and -3\sqrt{2} to get -2\sqrt{2}.
-2\sqrt{2}-\frac{4\left(\sqrt{3}\right)^{2}-4\sqrt{3}+1}{2}\left(\sqrt{48}-4\sqrt{\frac{1}{8}}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{3}-1\right)^{2}.
-2\sqrt{2}-\frac{4\times 3-4\sqrt{3}+1}{2}\left(\sqrt{48}-4\sqrt{\frac{1}{8}}\right)
The square of \sqrt{3} is 3.
-2\sqrt{2}-\frac{12-4\sqrt{3}+1}{2}\left(\sqrt{48}-4\sqrt{\frac{1}{8}}\right)
Multiply 4 and 3 to get 12.
-2\sqrt{2}-\frac{13-4\sqrt{3}}{2}\left(\sqrt{48}-4\sqrt{\frac{1}{8}}\right)
Add 12 and 1 to get 13.
-2\sqrt{2}-\frac{13-4\sqrt{3}}{2}\left(4\sqrt{3}-4\sqrt{\frac{1}{8}}\right)
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
-2\sqrt{2}-\frac{13-4\sqrt{3}}{2}\left(4\sqrt{3}-4\times \frac{\sqrt{1}}{\sqrt{8}}\right)
Rewrite the square root of the division \sqrt{\frac{1}{8}} as the division of square roots \frac{\sqrt{1}}{\sqrt{8}}.
-2\sqrt{2}-\frac{13-4\sqrt{3}}{2}\left(4\sqrt{3}-4\times \frac{1}{\sqrt{8}}\right)
Calculate the square root of 1 and get 1.
-2\sqrt{2}-\frac{13-4\sqrt{3}}{2}\left(4\sqrt{3}-4\times \frac{1}{2\sqrt{2}}\right)
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
-2\sqrt{2}-\frac{13-4\sqrt{3}}{2}\left(4\sqrt{3}-4\times \frac{\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}\right)
Rationalize the denominator of \frac{1}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
-2\sqrt{2}-\frac{13-4\sqrt{3}}{2}\left(4\sqrt{3}-4\times \frac{\sqrt{2}}{2\times 2}\right)
The square of \sqrt{2} is 2.
-2\sqrt{2}-\frac{13-4\sqrt{3}}{2}\left(4\sqrt{3}-4\times \frac{\sqrt{2}}{4}\right)
Multiply 2 and 2 to get 4.
-2\sqrt{2}-\frac{13-4\sqrt{3}}{2}\left(4\sqrt{3}-\sqrt{2}\right)
Cancel out 4 and 4.
-2\sqrt{2}-\frac{\left(13-4\sqrt{3}\right)\left(4\sqrt{3}-\sqrt{2}\right)}{2}
Express \frac{13-4\sqrt{3}}{2}\left(4\sqrt{3}-\sqrt{2}\right) as a single fraction.
-2\sqrt{2}-\frac{52\sqrt{3}-13\sqrt{2}-16\left(\sqrt{3}\right)^{2}+4\sqrt{3}\sqrt{2}}{2}
Use the distributive property to multiply 13-4\sqrt{3} by 4\sqrt{3}-\sqrt{2}.
-2\sqrt{2}-\frac{52\sqrt{3}-13\sqrt{2}-16\times 3+4\sqrt{3}\sqrt{2}}{2}
The square of \sqrt{3} is 3.
-2\sqrt{2}-\frac{52\sqrt{3}-13\sqrt{2}-48+4\sqrt{3}\sqrt{2}}{2}
Multiply -16 and 3 to get -48.
-2\sqrt{2}-\frac{52\sqrt{3}-13\sqrt{2}-48+4\sqrt{6}}{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{2\left(-2\right)\sqrt{2}}{2}-\frac{52\sqrt{3}-13\sqrt{2}-48+4\sqrt{6}}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2\sqrt{2} times \frac{2}{2}.
\frac{2\left(-2\right)\sqrt{2}-\left(52\sqrt{3}-13\sqrt{2}-48+4\sqrt{6}\right)}{2}
Since \frac{2\left(-2\right)\sqrt{2}}{2} and \frac{52\sqrt{3}-13\sqrt{2}-48+4\sqrt{6}}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{-4\sqrt{2}-52\sqrt{3}+13\sqrt{2}+48-4\sqrt{6}}{2}
Do the multiplications in 2\left(-2\right)\sqrt{2}-\left(52\sqrt{3}-13\sqrt{2}-48+4\sqrt{6}\right).
\frac{9\sqrt{2}-52\sqrt{3}+48-4\sqrt{6}}{2}
Do the calculations in -4\sqrt{2}-52\sqrt{3}+13\sqrt{2}+48-4\sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}