Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. y
Tick mark Image

Similar Problems from Web Search

Share

1\times \frac{-2x^{1}y\times \left(\frac{1}{2}x^{-\frac{1}{2}}y^{\frac{2}{3}}\right)^{2}\left(-4\right)y^{\frac{2}{3}}}{y}
To multiply powers of the same base, add their exponents. Add \frac{1}{2} and \frac{1}{2} to get 1.
1\times \frac{-2x^{1}y^{\frac{5}{3}}\times \left(\frac{1}{2}x^{-\frac{1}{2}}y^{\frac{2}{3}}\right)^{2}\left(-4\right)}{y}
To multiply powers of the same base, add their exponents. Add 1 and \frac{2}{3} to get \frac{5}{3}.
1\left(-4\right)\left(-2\right)\times \left(\frac{1}{2}x^{-\frac{1}{2}}y^{\frac{2}{3}}\right)^{2}y^{\frac{2}{3}}x^{1}
Cancel out y in both numerator and denominator.
1\times 8\times \left(\frac{1}{2}x^{-\frac{1}{2}}y^{\frac{2}{3}}\right)^{2}y^{\frac{2}{3}}x^{1}
Multiply -4 and -2 to get 8.
8\times \left(\frac{1}{2}x^{-\frac{1}{2}}y^{\frac{2}{3}}\right)^{2}y^{\frac{2}{3}}x^{1}
Multiply 1 and 8 to get 8.
8\times \left(\frac{1}{2}\right)^{2}\left(x^{-\frac{1}{2}}\right)^{2}\left(y^{\frac{2}{3}}\right)^{2}y^{\frac{2}{3}}x^{1}
Expand \left(\frac{1}{2}x^{-\frac{1}{2}}y^{\frac{2}{3}}\right)^{2}.
8\times \left(\frac{1}{2}\right)^{2}x^{-1}\left(y^{\frac{2}{3}}\right)^{2}y^{\frac{2}{3}}x^{1}
To raise a power to another power, multiply the exponents. Multiply -\frac{1}{2} and 2 to get -1.
8\times \left(\frac{1}{2}\right)^{2}x^{-1}y^{\frac{4}{3}}y^{\frac{2}{3}}x^{1}
To raise a power to another power, multiply the exponents. Multiply \frac{2}{3} and 2 to get \frac{4}{3}.
8\times \frac{1}{4}x^{-1}y^{\frac{4}{3}}y^{\frac{2}{3}}x^{1}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
2x^{-1}y^{\frac{4}{3}}y^{\frac{2}{3}}x^{1}
Multiply 8 and \frac{1}{4} to get 2.
2x^{-1}y^{2}x^{1}
To multiply powers of the same base, add their exponents. Add \frac{4}{3} and \frac{2}{3} to get 2.
2x^{-1}y^{2}x
Calculate x to the power of 1 and get x.
2y^{2}
Multiply x^{-1} and x to get 1.
\frac{\mathrm{d}}{\mathrm{d}y}(1\times \frac{-2x^{1}y\times \left(\frac{1}{2}x^{-\frac{1}{2}}y^{\frac{2}{3}}\right)^{2}\left(-4\right)y^{\frac{2}{3}}}{y})
To multiply powers of the same base, add their exponents. Add \frac{1}{2} and \frac{1}{2} to get 1.
\frac{\mathrm{d}}{\mathrm{d}y}(1\times \frac{-2x^{1}y^{\frac{5}{3}}\times \left(\frac{1}{2}x^{-\frac{1}{2}}y^{\frac{2}{3}}\right)^{2}\left(-4\right)}{y})
To multiply powers of the same base, add their exponents. Add 1 and \frac{2}{3} to get \frac{5}{3}.
\frac{\mathrm{d}}{\mathrm{d}y}(1\left(-4\right)\left(-2\right)\times \left(\frac{1}{2}x^{-\frac{1}{2}}y^{\frac{2}{3}}\right)^{2}y^{\frac{2}{3}}x^{1})
Cancel out y in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}y}(1\times 8\times \left(\frac{1}{2}x^{-\frac{1}{2}}y^{\frac{2}{3}}\right)^{2}y^{\frac{2}{3}}x^{1})
Multiply -4 and -2 to get 8.
\frac{\mathrm{d}}{\mathrm{d}y}(8\times \left(\frac{1}{2}x^{-\frac{1}{2}}y^{\frac{2}{3}}\right)^{2}y^{\frac{2}{3}}x^{1})
Multiply 1 and 8 to get 8.
\frac{\mathrm{d}}{\mathrm{d}y}(8\times \left(\frac{1}{2}\right)^{2}\left(x^{-\frac{1}{2}}\right)^{2}\left(y^{\frac{2}{3}}\right)^{2}y^{\frac{2}{3}}x^{1})
Expand \left(\frac{1}{2}x^{-\frac{1}{2}}y^{\frac{2}{3}}\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}y}(8\times \left(\frac{1}{2}\right)^{2}x^{-1}\left(y^{\frac{2}{3}}\right)^{2}y^{\frac{2}{3}}x^{1})
To raise a power to another power, multiply the exponents. Multiply -\frac{1}{2} and 2 to get -1.
\frac{\mathrm{d}}{\mathrm{d}y}(8\times \left(\frac{1}{2}\right)^{2}x^{-1}y^{\frac{4}{3}}y^{\frac{2}{3}}x^{1})
To raise a power to another power, multiply the exponents. Multiply \frac{2}{3} and 2 to get \frac{4}{3}.
\frac{\mathrm{d}}{\mathrm{d}y}(8\times \frac{1}{4}x^{-1}y^{\frac{4}{3}}y^{\frac{2}{3}}x^{1})
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{\mathrm{d}}{\mathrm{d}y}(2x^{-1}y^{\frac{4}{3}}y^{\frac{2}{3}}x^{1})
Multiply 8 and \frac{1}{4} to get 2.
\frac{\mathrm{d}}{\mathrm{d}y}(2x^{-1}y^{2}x^{1})
To multiply powers of the same base, add their exponents. Add \frac{4}{3} and \frac{2}{3} to get 2.
\frac{\mathrm{d}}{\mathrm{d}y}(2x^{-1}y^{2}x)
Calculate x to the power of 1 and get x.
\frac{\mathrm{d}}{\mathrm{d}y}(2y^{2})
Multiply x^{-1} and x to get 1.
2\times 2y^{2-1}
The derivative of ax^{n} is nax^{n-1}.
4y^{2-1}
Multiply 2 times 2.
4y^{1}
Subtract 1 from 2.
4y
For any term t, t^{1}=t.