Solve for μ
\mu =\frac{1}{920000000000000000000000}\approx 1.086956522 \cdot 10^{-24}
Share
Copied to clipboard
1\times 10^{-2}\times 10^{3}=\mu \times 2.3\times 10^{22}\times 4\times 10^{2}
To multiply powers of the same base, add their exponents. Add -3 and 1 to get -2.
1\times 10^{1}=\mu \times 2.3\times 10^{22}\times 4\times 10^{2}
To multiply powers of the same base, add their exponents. Add -2 and 3 to get 1.
1\times 10^{1}=\mu \times 2.3\times 10^{24}\times 4
To multiply powers of the same base, add their exponents. Add 22 and 2 to get 24.
1\times 10=\mu \times 2.3\times 10^{24}\times 4
Calculate 10 to the power of 1 and get 10.
10=\mu \times 2.3\times 10^{24}\times 4
Multiply 1 and 10 to get 10.
10=\mu \times 2.3\times 1000000000000000000000000\times 4
Calculate 10 to the power of 24 and get 1000000000000000000000000.
10=\mu \times 2300000000000000000000000\times 4
Multiply 2.3 and 1000000000000000000000000 to get 2300000000000000000000000.
10=\mu \times 9200000000000000000000000
Multiply 2300000000000000000000000 and 4 to get 9200000000000000000000000.
\mu \times 9200000000000000000000000=10
Swap sides so that all variable terms are on the left hand side.
\mu =\frac{10}{9200000000000000000000000}
Divide both sides by 9200000000000000000000000.
\mu =\frac{1}{920000000000000000000000}
Reduce the fraction \frac{10}{9200000000000000000000000} to lowest terms by extracting and canceling out 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}