Evaluate
-\frac{14}{5}=-2.8
Factor
-\frac{14}{5} = -2\frac{4}{5} = -2.8
Share
Copied to clipboard
\frac{\frac{5+4}{5}-\frac{3\times 8+3}{8}}{\left(-\frac{3}{4}\right)^{2}}
Multiply 1 and 5 to get 5.
\frac{\frac{9}{5}-\frac{3\times 8+3}{8}}{\left(-\frac{3}{4}\right)^{2}}
Add 5 and 4 to get 9.
\frac{\frac{9}{5}-\frac{24+3}{8}}{\left(-\frac{3}{4}\right)^{2}}
Multiply 3 and 8 to get 24.
\frac{\frac{9}{5}-\frac{27}{8}}{\left(-\frac{3}{4}\right)^{2}}
Add 24 and 3 to get 27.
\frac{\frac{72}{40}-\frac{135}{40}}{\left(-\frac{3}{4}\right)^{2}}
Least common multiple of 5 and 8 is 40. Convert \frac{9}{5} and \frac{27}{8} to fractions with denominator 40.
\frac{\frac{72-135}{40}}{\left(-\frac{3}{4}\right)^{2}}
Since \frac{72}{40} and \frac{135}{40} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{63}{40}}{\left(-\frac{3}{4}\right)^{2}}
Subtract 135 from 72 to get -63.
\frac{-\frac{63}{40}}{\frac{9}{16}}
Calculate -\frac{3}{4} to the power of 2 and get \frac{9}{16}.
-\frac{63}{40}\times \frac{16}{9}
Divide -\frac{63}{40} by \frac{9}{16} by multiplying -\frac{63}{40} by the reciprocal of \frac{9}{16}.
\frac{-63\times 16}{40\times 9}
Multiply -\frac{63}{40} times \frac{16}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{-1008}{360}
Do the multiplications in the fraction \frac{-63\times 16}{40\times 9}.
-\frac{14}{5}
Reduce the fraction \frac{-1008}{360} to lowest terms by extracting and canceling out 72.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}