Evaluate
\frac{1056}{1201}\approx 0.879267277
Factor
\frac{2 ^ {5} \cdot 3 \cdot 11}{1201} = 0.8792672772689425
Share
Copied to clipboard
\frac{\frac{1\times 99+3}{99}+1+\frac{95}{11}}{\frac{1}{99}+\frac{3\times 33+1}{33}+\frac{9\times 11+1}{11}}
Divide 33 by 33 to get 1.
\frac{\frac{99+3}{99}+1+\frac{95}{11}}{\frac{1}{99}+\frac{3\times 33+1}{33}+\frac{9\times 11+1}{11}}
Multiply 1 and 99 to get 99.
\frac{\frac{102}{99}+1+\frac{95}{11}}{\frac{1}{99}+\frac{3\times 33+1}{33}+\frac{9\times 11+1}{11}}
Add 99 and 3 to get 102.
\frac{\frac{34}{33}+1+\frac{95}{11}}{\frac{1}{99}+\frac{3\times 33+1}{33}+\frac{9\times 11+1}{11}}
Reduce the fraction \frac{102}{99} to lowest terms by extracting and canceling out 3.
\frac{\frac{34}{33}+\frac{33}{33}+\frac{95}{11}}{\frac{1}{99}+\frac{3\times 33+1}{33}+\frac{9\times 11+1}{11}}
Convert 1 to fraction \frac{33}{33}.
\frac{\frac{34+33}{33}+\frac{95}{11}}{\frac{1}{99}+\frac{3\times 33+1}{33}+\frac{9\times 11+1}{11}}
Since \frac{34}{33} and \frac{33}{33} have the same denominator, add them by adding their numerators.
\frac{\frac{67}{33}+\frac{95}{11}}{\frac{1}{99}+\frac{3\times 33+1}{33}+\frac{9\times 11+1}{11}}
Add 34 and 33 to get 67.
\frac{\frac{67}{33}+\frac{285}{33}}{\frac{1}{99}+\frac{3\times 33+1}{33}+\frac{9\times 11+1}{11}}
Least common multiple of 33 and 11 is 33. Convert \frac{67}{33} and \frac{95}{11} to fractions with denominator 33.
\frac{\frac{67+285}{33}}{\frac{1}{99}+\frac{3\times 33+1}{33}+\frac{9\times 11+1}{11}}
Since \frac{67}{33} and \frac{285}{33} have the same denominator, add them by adding their numerators.
\frac{\frac{352}{33}}{\frac{1}{99}+\frac{3\times 33+1}{33}+\frac{9\times 11+1}{11}}
Add 67 and 285 to get 352.
\frac{\frac{32}{3}}{\frac{1}{99}+\frac{3\times 33+1}{33}+\frac{9\times 11+1}{11}}
Reduce the fraction \frac{352}{33} to lowest terms by extracting and canceling out 11.
\frac{\frac{32}{3}}{\frac{1}{99}+\frac{99+1}{33}+\frac{9\times 11+1}{11}}
Multiply 3 and 33 to get 99.
\frac{\frac{32}{3}}{\frac{1}{99}+\frac{100}{33}+\frac{9\times 11+1}{11}}
Add 99 and 1 to get 100.
\frac{\frac{32}{3}}{\frac{1}{99}+\frac{300}{99}+\frac{9\times 11+1}{11}}
Least common multiple of 99 and 33 is 99. Convert \frac{1}{99} and \frac{100}{33} to fractions with denominator 99.
\frac{\frac{32}{3}}{\frac{1+300}{99}+\frac{9\times 11+1}{11}}
Since \frac{1}{99} and \frac{300}{99} have the same denominator, add them by adding their numerators.
\frac{\frac{32}{3}}{\frac{301}{99}+\frac{9\times 11+1}{11}}
Add 1 and 300 to get 301.
\frac{\frac{32}{3}}{\frac{301}{99}+\frac{99+1}{11}}
Multiply 9 and 11 to get 99.
\frac{\frac{32}{3}}{\frac{301}{99}+\frac{100}{11}}
Add 99 and 1 to get 100.
\frac{\frac{32}{3}}{\frac{301}{99}+\frac{900}{99}}
Least common multiple of 99 and 11 is 99. Convert \frac{301}{99} and \frac{100}{11} to fractions with denominator 99.
\frac{\frac{32}{3}}{\frac{301+900}{99}}
Since \frac{301}{99} and \frac{900}{99} have the same denominator, add them by adding their numerators.
\frac{\frac{32}{3}}{\frac{1201}{99}}
Add 301 and 900 to get 1201.
\frac{32}{3}\times \frac{99}{1201}
Divide \frac{32}{3} by \frac{1201}{99} by multiplying \frac{32}{3} by the reciprocal of \frac{1201}{99}.
\frac{32\times 99}{3\times 1201}
Multiply \frac{32}{3} times \frac{99}{1201} by multiplying numerator times numerator and denominator times denominator.
\frac{3168}{3603}
Do the multiplications in the fraction \frac{32\times 99}{3\times 1201}.
\frac{1056}{1201}
Reduce the fraction \frac{3168}{3603} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}