Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{4+3}{4}-\frac{7}{8}-\frac{7}{12}}{-\frac{7}{8}}+\frac{-\frac{7}{8}}{\frac{1\times 4+3}{4}-\frac{7}{8}-\frac{7}{12}}
Multiply 1 and 4 to get 4.
\frac{\frac{7}{4}-\frac{7}{8}-\frac{7}{12}}{-\frac{7}{8}}+\frac{-\frac{7}{8}}{\frac{1\times 4+3}{4}-\frac{7}{8}-\frac{7}{12}}
Add 4 and 3 to get 7.
\frac{\frac{14}{8}-\frac{7}{8}-\frac{7}{12}}{-\frac{7}{8}}+\frac{-\frac{7}{8}}{\frac{1\times 4+3}{4}-\frac{7}{8}-\frac{7}{12}}
Least common multiple of 4 and 8 is 8. Convert \frac{7}{4} and \frac{7}{8} to fractions with denominator 8.
\frac{\frac{14-7}{8}-\frac{7}{12}}{-\frac{7}{8}}+\frac{-\frac{7}{8}}{\frac{1\times 4+3}{4}-\frac{7}{8}-\frac{7}{12}}
Since \frac{14}{8} and \frac{7}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{7}{8}-\frac{7}{12}}{-\frac{7}{8}}+\frac{-\frac{7}{8}}{\frac{1\times 4+3}{4}-\frac{7}{8}-\frac{7}{12}}
Subtract 7 from 14 to get 7.
\frac{\frac{21}{24}-\frac{14}{24}}{-\frac{7}{8}}+\frac{-\frac{7}{8}}{\frac{1\times 4+3}{4}-\frac{7}{8}-\frac{7}{12}}
Least common multiple of 8 and 12 is 24. Convert \frac{7}{8} and \frac{7}{12} to fractions with denominator 24.
\frac{\frac{21-14}{24}}{-\frac{7}{8}}+\frac{-\frac{7}{8}}{\frac{1\times 4+3}{4}-\frac{7}{8}-\frac{7}{12}}
Since \frac{21}{24} and \frac{14}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{7}{24}}{-\frac{7}{8}}+\frac{-\frac{7}{8}}{\frac{1\times 4+3}{4}-\frac{7}{8}-\frac{7}{12}}
Subtract 14 from 21 to get 7.
\frac{7}{24}\left(-\frac{8}{7}\right)+\frac{-\frac{7}{8}}{\frac{1\times 4+3}{4}-\frac{7}{8}-\frac{7}{12}}
Divide \frac{7}{24} by -\frac{7}{8} by multiplying \frac{7}{24} by the reciprocal of -\frac{7}{8}.
\frac{7\left(-8\right)}{24\times 7}+\frac{-\frac{7}{8}}{\frac{1\times 4+3}{4}-\frac{7}{8}-\frac{7}{12}}
Multiply \frac{7}{24} times -\frac{8}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{-8}{24}+\frac{-\frac{7}{8}}{\frac{1\times 4+3}{4}-\frac{7}{8}-\frac{7}{12}}
Cancel out 7 in both numerator and denominator.
-\frac{1}{3}+\frac{-\frac{7}{8}}{\frac{1\times 4+3}{4}-\frac{7}{8}-\frac{7}{12}}
Reduce the fraction \frac{-8}{24} to lowest terms by extracting and canceling out 8.
-\frac{1}{3}+\frac{-\frac{7}{8}}{\frac{4+3}{4}-\frac{7}{8}-\frac{7}{12}}
Multiply 1 and 4 to get 4.
-\frac{1}{3}+\frac{-\frac{7}{8}}{\frac{7}{4}-\frac{7}{8}-\frac{7}{12}}
Add 4 and 3 to get 7.
-\frac{1}{3}+\frac{-\frac{7}{8}}{\frac{14}{8}-\frac{7}{8}-\frac{7}{12}}
Least common multiple of 4 and 8 is 8. Convert \frac{7}{4} and \frac{7}{8} to fractions with denominator 8.
-\frac{1}{3}+\frac{-\frac{7}{8}}{\frac{14-7}{8}-\frac{7}{12}}
Since \frac{14}{8} and \frac{7}{8} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{3}+\frac{-\frac{7}{8}}{\frac{7}{8}-\frac{7}{12}}
Subtract 7 from 14 to get 7.
-\frac{1}{3}+\frac{-\frac{7}{8}}{\frac{21}{24}-\frac{14}{24}}
Least common multiple of 8 and 12 is 24. Convert \frac{7}{8} and \frac{7}{12} to fractions with denominator 24.
-\frac{1}{3}+\frac{-\frac{7}{8}}{\frac{21-14}{24}}
Since \frac{21}{24} and \frac{14}{24} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{3}+\frac{-\frac{7}{8}}{\frac{7}{24}}
Subtract 14 from 21 to get 7.
-\frac{1}{3}-\frac{7}{8}\times \frac{24}{7}
Divide -\frac{7}{8} by \frac{7}{24} by multiplying -\frac{7}{8} by the reciprocal of \frac{7}{24}.
-\frac{1}{3}+\frac{-7\times 24}{8\times 7}
Multiply -\frac{7}{8} times \frac{24}{7} by multiplying numerator times numerator and denominator times denominator.
-\frac{1}{3}+\frac{-168}{56}
Do the multiplications in the fraction \frac{-7\times 24}{8\times 7}.
-\frac{1}{3}-3
Divide -168 by 56 to get -3.
-\frac{1}{3}-\frac{9}{3}
Convert 3 to fraction \frac{9}{3}.
\frac{-1-9}{3}
Since -\frac{1}{3} and \frac{9}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{10}{3}
Subtract 9 from -1 to get -10.