Evaluate
-\frac{10}{3}\approx -3.333333333
Factor
-\frac{10}{3} = -3\frac{1}{3} = -3.3333333333333335
Share
Copied to clipboard
\frac{\frac{4+3}{4}-\frac{7}{8}-\frac{7}{12}}{-\frac{7}{8}}+\frac{-\frac{7}{8}}{\frac{1\times 4+3}{4}-\frac{7}{8}-\frac{7}{12}}
Multiply 1 and 4 to get 4.
\frac{\frac{7}{4}-\frac{7}{8}-\frac{7}{12}}{-\frac{7}{8}}+\frac{-\frac{7}{8}}{\frac{1\times 4+3}{4}-\frac{7}{8}-\frac{7}{12}}
Add 4 and 3 to get 7.
\frac{\frac{14}{8}-\frac{7}{8}-\frac{7}{12}}{-\frac{7}{8}}+\frac{-\frac{7}{8}}{\frac{1\times 4+3}{4}-\frac{7}{8}-\frac{7}{12}}
Least common multiple of 4 and 8 is 8. Convert \frac{7}{4} and \frac{7}{8} to fractions with denominator 8.
\frac{\frac{14-7}{8}-\frac{7}{12}}{-\frac{7}{8}}+\frac{-\frac{7}{8}}{\frac{1\times 4+3}{4}-\frac{7}{8}-\frac{7}{12}}
Since \frac{14}{8} and \frac{7}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{7}{8}-\frac{7}{12}}{-\frac{7}{8}}+\frac{-\frac{7}{8}}{\frac{1\times 4+3}{4}-\frac{7}{8}-\frac{7}{12}}
Subtract 7 from 14 to get 7.
\frac{\frac{21}{24}-\frac{14}{24}}{-\frac{7}{8}}+\frac{-\frac{7}{8}}{\frac{1\times 4+3}{4}-\frac{7}{8}-\frac{7}{12}}
Least common multiple of 8 and 12 is 24. Convert \frac{7}{8} and \frac{7}{12} to fractions with denominator 24.
\frac{\frac{21-14}{24}}{-\frac{7}{8}}+\frac{-\frac{7}{8}}{\frac{1\times 4+3}{4}-\frac{7}{8}-\frac{7}{12}}
Since \frac{21}{24} and \frac{14}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{7}{24}}{-\frac{7}{8}}+\frac{-\frac{7}{8}}{\frac{1\times 4+3}{4}-\frac{7}{8}-\frac{7}{12}}
Subtract 14 from 21 to get 7.
\frac{7}{24}\left(-\frac{8}{7}\right)+\frac{-\frac{7}{8}}{\frac{1\times 4+3}{4}-\frac{7}{8}-\frac{7}{12}}
Divide \frac{7}{24} by -\frac{7}{8} by multiplying \frac{7}{24} by the reciprocal of -\frac{7}{8}.
\frac{7\left(-8\right)}{24\times 7}+\frac{-\frac{7}{8}}{\frac{1\times 4+3}{4}-\frac{7}{8}-\frac{7}{12}}
Multiply \frac{7}{24} times -\frac{8}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{-8}{24}+\frac{-\frac{7}{8}}{\frac{1\times 4+3}{4}-\frac{7}{8}-\frac{7}{12}}
Cancel out 7 in both numerator and denominator.
-\frac{1}{3}+\frac{-\frac{7}{8}}{\frac{1\times 4+3}{4}-\frac{7}{8}-\frac{7}{12}}
Reduce the fraction \frac{-8}{24} to lowest terms by extracting and canceling out 8.
-\frac{1}{3}+\frac{-\frac{7}{8}}{\frac{4+3}{4}-\frac{7}{8}-\frac{7}{12}}
Multiply 1 and 4 to get 4.
-\frac{1}{3}+\frac{-\frac{7}{8}}{\frac{7}{4}-\frac{7}{8}-\frac{7}{12}}
Add 4 and 3 to get 7.
-\frac{1}{3}+\frac{-\frac{7}{8}}{\frac{14}{8}-\frac{7}{8}-\frac{7}{12}}
Least common multiple of 4 and 8 is 8. Convert \frac{7}{4} and \frac{7}{8} to fractions with denominator 8.
-\frac{1}{3}+\frac{-\frac{7}{8}}{\frac{14-7}{8}-\frac{7}{12}}
Since \frac{14}{8} and \frac{7}{8} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{3}+\frac{-\frac{7}{8}}{\frac{7}{8}-\frac{7}{12}}
Subtract 7 from 14 to get 7.
-\frac{1}{3}+\frac{-\frac{7}{8}}{\frac{21}{24}-\frac{14}{24}}
Least common multiple of 8 and 12 is 24. Convert \frac{7}{8} and \frac{7}{12} to fractions with denominator 24.
-\frac{1}{3}+\frac{-\frac{7}{8}}{\frac{21-14}{24}}
Since \frac{21}{24} and \frac{14}{24} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{3}+\frac{-\frac{7}{8}}{\frac{7}{24}}
Subtract 14 from 21 to get 7.
-\frac{1}{3}-\frac{7}{8}\times \frac{24}{7}
Divide -\frac{7}{8} by \frac{7}{24} by multiplying -\frac{7}{8} by the reciprocal of \frac{7}{24}.
-\frac{1}{3}+\frac{-7\times 24}{8\times 7}
Multiply -\frac{7}{8} times \frac{24}{7} by multiplying numerator times numerator and denominator times denominator.
-\frac{1}{3}+\frac{-168}{56}
Do the multiplications in the fraction \frac{-7\times 24}{8\times 7}.
-\frac{1}{3}-3
Divide -168 by 56 to get -3.
-\frac{1}{3}-\frac{9}{3}
Convert 3 to fraction \frac{9}{3}.
\frac{-1-9}{3}
Since -\frac{1}{3} and \frac{9}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{10}{3}
Subtract 9 from -1 to get -10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}