Skip to main content
Solve for c
Tick mark Image

Similar Problems from Web Search

Share

4\times \frac{1\times 4+3}{4}+3=12cc
Multiply both sides of the equation by 12, the least common multiple of 3,4.
4\times \frac{1\times 4+3}{4}+3=12c^{2}
Multiply c and c to get c^{2}.
4\times \frac{4+3}{4}+3=12c^{2}
Multiply 1 and 4 to get 4.
4\times \frac{7}{4}+3=12c^{2}
Add 4 and 3 to get 7.
7+3=12c^{2}
Cancel out 4 and 4.
10=12c^{2}
Add 7 and 3 to get 10.
12c^{2}=10
Swap sides so that all variable terms are on the left hand side.
c^{2}=\frac{10}{12}
Divide both sides by 12.
c^{2}=\frac{5}{6}
Reduce the fraction \frac{10}{12} to lowest terms by extracting and canceling out 2.
c=\frac{\sqrt{30}}{6} c=-\frac{\sqrt{30}}{6}
Take the square root of both sides of the equation.
4\times \frac{1\times 4+3}{4}+3=12cc
Multiply both sides of the equation by 12, the least common multiple of 3,4.
4\times \frac{1\times 4+3}{4}+3=12c^{2}
Multiply c and c to get c^{2}.
4\times \frac{4+3}{4}+3=12c^{2}
Multiply 1 and 4 to get 4.
4\times \frac{7}{4}+3=12c^{2}
Add 4 and 3 to get 7.
7+3=12c^{2}
Cancel out 4 and 4.
10=12c^{2}
Add 7 and 3 to get 10.
12c^{2}=10
Swap sides so that all variable terms are on the left hand side.
12c^{2}-10=0
Subtract 10 from both sides.
c=\frac{0±\sqrt{0^{2}-4\times 12\left(-10\right)}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, 0 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{0±\sqrt{-4\times 12\left(-10\right)}}{2\times 12}
Square 0.
c=\frac{0±\sqrt{-48\left(-10\right)}}{2\times 12}
Multiply -4 times 12.
c=\frac{0±\sqrt{480}}{2\times 12}
Multiply -48 times -10.
c=\frac{0±4\sqrt{30}}{2\times 12}
Take the square root of 480.
c=\frac{0±4\sqrt{30}}{24}
Multiply 2 times 12.
c=\frac{\sqrt{30}}{6}
Now solve the equation c=\frac{0±4\sqrt{30}}{24} when ± is plus.
c=-\frac{\sqrt{30}}{6}
Now solve the equation c=\frac{0±4\sqrt{30}}{24} when ± is minus.
c=\frac{\sqrt{30}}{6} c=-\frac{\sqrt{30}}{6}
The equation is now solved.