Evaluate
\frac{60}{59}\approx 1.016949153
Factor
\frac{2 ^ {2} \cdot 3 \cdot 5}{59} = 1\frac{1}{59} = 1.0169491525423728
Share
Copied to clipboard
\frac{\frac{3+2}{3}+\frac{4\times 2+1}{2}+\frac{2\times 6+5}{6}}{\frac{4\times 10+3}{10}+\frac{3\times 5+1}{5}+\frac{1\times 20+7}{20}}
Multiply 1 and 3 to get 3.
\frac{\frac{5}{3}+\frac{4\times 2+1}{2}+\frac{2\times 6+5}{6}}{\frac{4\times 10+3}{10}+\frac{3\times 5+1}{5}+\frac{1\times 20+7}{20}}
Add 3 and 2 to get 5.
\frac{\frac{5}{3}+\frac{8+1}{2}+\frac{2\times 6+5}{6}}{\frac{4\times 10+3}{10}+\frac{3\times 5+1}{5}+\frac{1\times 20+7}{20}}
Multiply 4 and 2 to get 8.
\frac{\frac{5}{3}+\frac{9}{2}+\frac{2\times 6+5}{6}}{\frac{4\times 10+3}{10}+\frac{3\times 5+1}{5}+\frac{1\times 20+7}{20}}
Add 8 and 1 to get 9.
\frac{\frac{10}{6}+\frac{27}{6}+\frac{2\times 6+5}{6}}{\frac{4\times 10+3}{10}+\frac{3\times 5+1}{5}+\frac{1\times 20+7}{20}}
Least common multiple of 3 and 2 is 6. Convert \frac{5}{3} and \frac{9}{2} to fractions with denominator 6.
\frac{\frac{10+27}{6}+\frac{2\times 6+5}{6}}{\frac{4\times 10+3}{10}+\frac{3\times 5+1}{5}+\frac{1\times 20+7}{20}}
Since \frac{10}{6} and \frac{27}{6} have the same denominator, add them by adding their numerators.
\frac{\frac{37}{6}+\frac{2\times 6+5}{6}}{\frac{4\times 10+3}{10}+\frac{3\times 5+1}{5}+\frac{1\times 20+7}{20}}
Add 10 and 27 to get 37.
\frac{\frac{37}{6}+\frac{12+5}{6}}{\frac{4\times 10+3}{10}+\frac{3\times 5+1}{5}+\frac{1\times 20+7}{20}}
Multiply 2 and 6 to get 12.
\frac{\frac{37}{6}+\frac{17}{6}}{\frac{4\times 10+3}{10}+\frac{3\times 5+1}{5}+\frac{1\times 20+7}{20}}
Add 12 and 5 to get 17.
\frac{\frac{37+17}{6}}{\frac{4\times 10+3}{10}+\frac{3\times 5+1}{5}+\frac{1\times 20+7}{20}}
Since \frac{37}{6} and \frac{17}{6} have the same denominator, add them by adding their numerators.
\frac{\frac{54}{6}}{\frac{4\times 10+3}{10}+\frac{3\times 5+1}{5}+\frac{1\times 20+7}{20}}
Add 37 and 17 to get 54.
\frac{9}{\frac{4\times 10+3}{10}+\frac{3\times 5+1}{5}+\frac{1\times 20+7}{20}}
Divide 54 by 6 to get 9.
\frac{9}{\frac{40+3}{10}+\frac{3\times 5+1}{5}+\frac{1\times 20+7}{20}}
Multiply 4 and 10 to get 40.
\frac{9}{\frac{43}{10}+\frac{3\times 5+1}{5}+\frac{1\times 20+7}{20}}
Add 40 and 3 to get 43.
\frac{9}{\frac{43}{10}+\frac{15+1}{5}+\frac{1\times 20+7}{20}}
Multiply 3 and 5 to get 15.
\frac{9}{\frac{43}{10}+\frac{16}{5}+\frac{1\times 20+7}{20}}
Add 15 and 1 to get 16.
\frac{9}{\frac{43}{10}+\frac{32}{10}+\frac{1\times 20+7}{20}}
Least common multiple of 10 and 5 is 10. Convert \frac{43}{10} and \frac{16}{5} to fractions with denominator 10.
\frac{9}{\frac{43+32}{10}+\frac{1\times 20+7}{20}}
Since \frac{43}{10} and \frac{32}{10} have the same denominator, add them by adding their numerators.
\frac{9}{\frac{75}{10}+\frac{1\times 20+7}{20}}
Add 43 and 32 to get 75.
\frac{9}{\frac{15}{2}+\frac{1\times 20+7}{20}}
Reduce the fraction \frac{75}{10} to lowest terms by extracting and canceling out 5.
\frac{9}{\frac{15}{2}+\frac{20+7}{20}}
Multiply 1 and 20 to get 20.
\frac{9}{\frac{15}{2}+\frac{27}{20}}
Add 20 and 7 to get 27.
\frac{9}{\frac{150}{20}+\frac{27}{20}}
Least common multiple of 2 and 20 is 20. Convert \frac{15}{2} and \frac{27}{20} to fractions with denominator 20.
\frac{9}{\frac{150+27}{20}}
Since \frac{150}{20} and \frac{27}{20} have the same denominator, add them by adding their numerators.
\frac{9}{\frac{177}{20}}
Add 150 and 27 to get 177.
9\times \frac{20}{177}
Divide 9 by \frac{177}{20} by multiplying 9 by the reciprocal of \frac{177}{20}.
\frac{9\times 20}{177}
Express 9\times \frac{20}{177} as a single fraction.
\frac{180}{177}
Multiply 9 and 20 to get 180.
\frac{60}{59}
Reduce the fraction \frac{180}{177} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}