Evaluate
\frac{19}{5}=3.8
Factor
\frac{19}{5} = 3\frac{4}{5} = 3.8
Share
Copied to clipboard
\frac{\frac{4+1}{4}\times \frac{2}{5}+\frac{\frac{3\times 7+3}{7}}{\frac{9}{14}}}{\frac{5}{12}}-\frac{10\times 5+1}{5}
Multiply 1 and 4 to get 4.
\frac{\frac{5}{4}\times \frac{2}{5}+\frac{\frac{3\times 7+3}{7}}{\frac{9}{14}}}{\frac{5}{12}}-\frac{10\times 5+1}{5}
Add 4 and 1 to get 5.
\frac{\frac{5\times 2}{4\times 5}+\frac{\frac{3\times 7+3}{7}}{\frac{9}{14}}}{\frac{5}{12}}-\frac{10\times 5+1}{5}
Multiply \frac{5}{4} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{2}{4}+\frac{\frac{3\times 7+3}{7}}{\frac{9}{14}}}{\frac{5}{12}}-\frac{10\times 5+1}{5}
Cancel out 5 in both numerator and denominator.
\frac{\frac{1}{2}+\frac{\frac{3\times 7+3}{7}}{\frac{9}{14}}}{\frac{5}{12}}-\frac{10\times 5+1}{5}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{\frac{1}{2}+\frac{\left(3\times 7+3\right)\times 14}{7\times 9}}{\frac{5}{12}}-\frac{10\times 5+1}{5}
Divide \frac{3\times 7+3}{7} by \frac{9}{14} by multiplying \frac{3\times 7+3}{7} by the reciprocal of \frac{9}{14}.
\frac{\frac{1}{2}+\frac{2\left(3+3\times 7\right)}{9}}{\frac{5}{12}}-\frac{10\times 5+1}{5}
Cancel out 7 in both numerator and denominator.
\frac{\frac{1}{2}+\frac{2\left(3+21\right)}{9}}{\frac{5}{12}}-\frac{10\times 5+1}{5}
Multiply 3 and 7 to get 21.
\frac{\frac{1}{2}+\frac{2\times 24}{9}}{\frac{5}{12}}-\frac{10\times 5+1}{5}
Add 3 and 21 to get 24.
\frac{\frac{1}{2}+\frac{48}{9}}{\frac{5}{12}}-\frac{10\times 5+1}{5}
Multiply 2 and 24 to get 48.
\frac{\frac{1}{2}+\frac{16}{3}}{\frac{5}{12}}-\frac{10\times 5+1}{5}
Reduce the fraction \frac{48}{9} to lowest terms by extracting and canceling out 3.
\frac{\frac{3}{6}+\frac{32}{6}}{\frac{5}{12}}-\frac{10\times 5+1}{5}
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{16}{3} to fractions with denominator 6.
\frac{\frac{3+32}{6}}{\frac{5}{12}}-\frac{10\times 5+1}{5}
Since \frac{3}{6} and \frac{32}{6} have the same denominator, add them by adding their numerators.
\frac{\frac{35}{6}}{\frac{5}{12}}-\frac{10\times 5+1}{5}
Add 3 and 32 to get 35.
\frac{35}{6}\times \frac{12}{5}-\frac{10\times 5+1}{5}
Divide \frac{35}{6} by \frac{5}{12} by multiplying \frac{35}{6} by the reciprocal of \frac{5}{12}.
\frac{35\times 12}{6\times 5}-\frac{10\times 5+1}{5}
Multiply \frac{35}{6} times \frac{12}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{420}{30}-\frac{10\times 5+1}{5}
Do the multiplications in the fraction \frac{35\times 12}{6\times 5}.
14-\frac{10\times 5+1}{5}
Divide 420 by 30 to get 14.
14-\frac{50+1}{5}
Multiply 10 and 5 to get 50.
14-\frac{51}{5}
Add 50 and 1 to get 51.
\frac{70}{5}-\frac{51}{5}
Convert 14 to fraction \frac{70}{5}.
\frac{70-51}{5}
Since \frac{70}{5} and \frac{51}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{19}{5}
Subtract 51 from 70 to get 19.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}