Evaluate
6
Factor
2\times 3
Share
Copied to clipboard
\left(\frac{10+1}{10}+\frac{7}{\frac{3\times 12+1}{12}-\frac{1\times 8+5}{8}}\right)\times \frac{1\times 59+1}{59}
Multiply 1 and 10 to get 10.
\left(\frac{11}{10}+\frac{7}{\frac{3\times 12+1}{12}-\frac{1\times 8+5}{8}}\right)\times \frac{1\times 59+1}{59}
Add 10 and 1 to get 11.
\left(\frac{11}{10}+\frac{7}{\frac{36+1}{12}-\frac{1\times 8+5}{8}}\right)\times \frac{1\times 59+1}{59}
Multiply 3 and 12 to get 36.
\left(\frac{11}{10}+\frac{7}{\frac{37}{12}-\frac{1\times 8+5}{8}}\right)\times \frac{1\times 59+1}{59}
Add 36 and 1 to get 37.
\left(\frac{11}{10}+\frac{7}{\frac{37}{12}-\frac{8+5}{8}}\right)\times \frac{1\times 59+1}{59}
Multiply 1 and 8 to get 8.
\left(\frac{11}{10}+\frac{7}{\frac{37}{12}-\frac{13}{8}}\right)\times \frac{1\times 59+1}{59}
Add 8 and 5 to get 13.
\left(\frac{11}{10}+\frac{7}{\frac{74}{24}-\frac{39}{24}}\right)\times \frac{1\times 59+1}{59}
Least common multiple of 12 and 8 is 24. Convert \frac{37}{12} and \frac{13}{8} to fractions with denominator 24.
\left(\frac{11}{10}+\frac{7}{\frac{74-39}{24}}\right)\times \frac{1\times 59+1}{59}
Since \frac{74}{24} and \frac{39}{24} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{11}{10}+\frac{7}{\frac{35}{24}}\right)\times \frac{1\times 59+1}{59}
Subtract 39 from 74 to get 35.
\left(\frac{11}{10}+7\times \frac{24}{35}\right)\times \frac{1\times 59+1}{59}
Divide 7 by \frac{35}{24} by multiplying 7 by the reciprocal of \frac{35}{24}.
\left(\frac{11}{10}+\frac{7\times 24}{35}\right)\times \frac{1\times 59+1}{59}
Express 7\times \frac{24}{35} as a single fraction.
\left(\frac{11}{10}+\frac{168}{35}\right)\times \frac{1\times 59+1}{59}
Multiply 7 and 24 to get 168.
\left(\frac{11}{10}+\frac{24}{5}\right)\times \frac{1\times 59+1}{59}
Reduce the fraction \frac{168}{35} to lowest terms by extracting and canceling out 7.
\left(\frac{11}{10}+\frac{48}{10}\right)\times \frac{1\times 59+1}{59}
Least common multiple of 10 and 5 is 10. Convert \frac{11}{10} and \frac{24}{5} to fractions with denominator 10.
\frac{11+48}{10}\times \frac{1\times 59+1}{59}
Since \frac{11}{10} and \frac{48}{10} have the same denominator, add them by adding their numerators.
\frac{59}{10}\times \frac{1\times 59+1}{59}
Add 11 and 48 to get 59.
\frac{59}{10}\times \frac{59+1}{59}
Multiply 1 and 59 to get 59.
\frac{59}{10}\times \frac{60}{59}
Add 59 and 1 to get 60.
\frac{59\times 60}{10\times 59}
Multiply \frac{59}{10} times \frac{60}{59} by multiplying numerator times numerator and denominator times denominator.
\frac{60}{10}
Cancel out 59 in both numerator and denominator.
6
Divide 60 by 10 to get 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}