Skip to main content
Solve for D
Tick mark Image

Similar Problems from Web Search

Share

1^{3}+6D^{2}+11D+6=0
Divide both sides by 4. Zero divided by any non-zero number gives zero.
1+6D^{2}+11D+6=0
Calculate 1 to the power of 3 and get 1.
7+6D^{2}+11D=0
Add 1 and 6 to get 7.
6D^{2}+11D+7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
D=\frac{-11±\sqrt{11^{2}-4\times 6\times 7}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 11 for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
D=\frac{-11±\sqrt{121-4\times 6\times 7}}{2\times 6}
Square 11.
D=\frac{-11±\sqrt{121-24\times 7}}{2\times 6}
Multiply -4 times 6.
D=\frac{-11±\sqrt{121-168}}{2\times 6}
Multiply -24 times 7.
D=\frac{-11±\sqrt{-47}}{2\times 6}
Add 121 to -168.
D=\frac{-11±\sqrt{47}i}{2\times 6}
Take the square root of -47.
D=\frac{-11±\sqrt{47}i}{12}
Multiply 2 times 6.
D=\frac{-11+\sqrt{47}i}{12}
Now solve the equation D=\frac{-11±\sqrt{47}i}{12} when ± is plus. Add -11 to i\sqrt{47}.
D=\frac{-\sqrt{47}i-11}{12}
Now solve the equation D=\frac{-11±\sqrt{47}i}{12} when ± is minus. Subtract i\sqrt{47} from -11.
D=\frac{-11+\sqrt{47}i}{12} D=\frac{-\sqrt{47}i-11}{12}
The equation is now solved.
1^{3}+6D^{2}+11D+6=0
Divide both sides by 4. Zero divided by any non-zero number gives zero.
1+6D^{2}+11D+6=0
Calculate 1 to the power of 3 and get 1.
7+6D^{2}+11D=0
Add 1 and 6 to get 7.
6D^{2}+11D=-7
Subtract 7 from both sides. Anything subtracted from zero gives its negation.
\frac{6D^{2}+11D}{6}=-\frac{7}{6}
Divide both sides by 6.
D^{2}+\frac{11}{6}D=-\frac{7}{6}
Dividing by 6 undoes the multiplication by 6.
D^{2}+\frac{11}{6}D+\left(\frac{11}{12}\right)^{2}=-\frac{7}{6}+\left(\frac{11}{12}\right)^{2}
Divide \frac{11}{6}, the coefficient of the x term, by 2 to get \frac{11}{12}. Then add the square of \frac{11}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
D^{2}+\frac{11}{6}D+\frac{121}{144}=-\frac{7}{6}+\frac{121}{144}
Square \frac{11}{12} by squaring both the numerator and the denominator of the fraction.
D^{2}+\frac{11}{6}D+\frac{121}{144}=-\frac{47}{144}
Add -\frac{7}{6} to \frac{121}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(D+\frac{11}{12}\right)^{2}=-\frac{47}{144}
Factor D^{2}+\frac{11}{6}D+\frac{121}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(D+\frac{11}{12}\right)^{2}}=\sqrt{-\frac{47}{144}}
Take the square root of both sides of the equation.
D+\frac{11}{12}=\frac{\sqrt{47}i}{12} D+\frac{11}{12}=-\frac{\sqrt{47}i}{12}
Simplify.
D=\frac{-11+\sqrt{47}i}{12} D=\frac{-\sqrt{47}i-11}{12}
Subtract \frac{11}{12} from both sides of the equation.