Solve for D
D=\frac{-11+\sqrt{47}i}{12}\approx -0.916666667+0.57130455i
D=\frac{-\sqrt{47}i-11}{12}\approx -0.916666667-0.57130455i
Share
Copied to clipboard
1^{3}+6D^{2}+11D+6=0
Divide both sides by 4. Zero divided by any non-zero number gives zero.
1+6D^{2}+11D+6=0
Calculate 1 to the power of 3 and get 1.
7+6D^{2}+11D=0
Add 1 and 6 to get 7.
6D^{2}+11D+7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
D=\frac{-11±\sqrt{11^{2}-4\times 6\times 7}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 11 for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
D=\frac{-11±\sqrt{121-4\times 6\times 7}}{2\times 6}
Square 11.
D=\frac{-11±\sqrt{121-24\times 7}}{2\times 6}
Multiply -4 times 6.
D=\frac{-11±\sqrt{121-168}}{2\times 6}
Multiply -24 times 7.
D=\frac{-11±\sqrt{-47}}{2\times 6}
Add 121 to -168.
D=\frac{-11±\sqrt{47}i}{2\times 6}
Take the square root of -47.
D=\frac{-11±\sqrt{47}i}{12}
Multiply 2 times 6.
D=\frac{-11+\sqrt{47}i}{12}
Now solve the equation D=\frac{-11±\sqrt{47}i}{12} when ± is plus. Add -11 to i\sqrt{47}.
D=\frac{-\sqrt{47}i-11}{12}
Now solve the equation D=\frac{-11±\sqrt{47}i}{12} when ± is minus. Subtract i\sqrt{47} from -11.
D=\frac{-11+\sqrt{47}i}{12} D=\frac{-\sqrt{47}i-11}{12}
The equation is now solved.
1^{3}+6D^{2}+11D+6=0
Divide both sides by 4. Zero divided by any non-zero number gives zero.
1+6D^{2}+11D+6=0
Calculate 1 to the power of 3 and get 1.
7+6D^{2}+11D=0
Add 1 and 6 to get 7.
6D^{2}+11D=-7
Subtract 7 from both sides. Anything subtracted from zero gives its negation.
\frac{6D^{2}+11D}{6}=-\frac{7}{6}
Divide both sides by 6.
D^{2}+\frac{11}{6}D=-\frac{7}{6}
Dividing by 6 undoes the multiplication by 6.
D^{2}+\frac{11}{6}D+\left(\frac{11}{12}\right)^{2}=-\frac{7}{6}+\left(\frac{11}{12}\right)^{2}
Divide \frac{11}{6}, the coefficient of the x term, by 2 to get \frac{11}{12}. Then add the square of \frac{11}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
D^{2}+\frac{11}{6}D+\frac{121}{144}=-\frac{7}{6}+\frac{121}{144}
Square \frac{11}{12} by squaring both the numerator and the denominator of the fraction.
D^{2}+\frac{11}{6}D+\frac{121}{144}=-\frac{47}{144}
Add -\frac{7}{6} to \frac{121}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(D+\frac{11}{12}\right)^{2}=-\frac{47}{144}
Factor D^{2}+\frac{11}{6}D+\frac{121}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(D+\frac{11}{12}\right)^{2}}=\sqrt{-\frac{47}{144}}
Take the square root of both sides of the equation.
D+\frac{11}{12}=\frac{\sqrt{47}i}{12} D+\frac{11}{12}=-\frac{\sqrt{47}i}{12}
Simplify.
D=\frac{-11+\sqrt{47}i}{12} D=\frac{-\sqrt{47}i-11}{12}
Subtract \frac{11}{12} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}