Solve for t
t=\frac{\sqrt{10}}{10}\approx 0.316227766
t=-\frac{\sqrt{10}}{10}\approx -0.316227766
Share
Copied to clipboard
100t^{2}=10
Multiply \frac{1}{2} and 200 to get 100.
t^{2}=\frac{10}{100}
Divide both sides by 100.
t^{2}=\frac{1}{10}
Reduce the fraction \frac{10}{100} to lowest terms by extracting and canceling out 10.
t=\frac{\sqrt{10}}{10} t=-\frac{\sqrt{10}}{10}
Take the square root of both sides of the equation.
100t^{2}=10
Multiply \frac{1}{2} and 200 to get 100.
100t^{2}-10=0
Subtract 10 from both sides.
t=\frac{0±\sqrt{0^{2}-4\times 100\left(-10\right)}}{2\times 100}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 100 for a, 0 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\times 100\left(-10\right)}}{2\times 100}
Square 0.
t=\frac{0±\sqrt{-400\left(-10\right)}}{2\times 100}
Multiply -4 times 100.
t=\frac{0±\sqrt{4000}}{2\times 100}
Multiply -400 times -10.
t=\frac{0±20\sqrt{10}}{2\times 100}
Take the square root of 4000.
t=\frac{0±20\sqrt{10}}{200}
Multiply 2 times 100.
t=\frac{\sqrt{10}}{10}
Now solve the equation t=\frac{0±20\sqrt{10}}{200} when ± is plus.
t=-\frac{\sqrt{10}}{10}
Now solve the equation t=\frac{0±20\sqrt{10}}{200} when ± is minus.
t=\frac{\sqrt{10}}{10} t=-\frac{\sqrt{10}}{10}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}