Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

100t^{2}=10
Multiply \frac{1}{2} and 200 to get 100.
t^{2}=\frac{10}{100}
Divide both sides by 100.
t^{2}=\frac{1}{10}
Reduce the fraction \frac{10}{100} to lowest terms by extracting and canceling out 10.
t=\frac{\sqrt{10}}{10} t=-\frac{\sqrt{10}}{10}
Take the square root of both sides of the equation.
100t^{2}=10
Multiply \frac{1}{2} and 200 to get 100.
100t^{2}-10=0
Subtract 10 from both sides.
t=\frac{0±\sqrt{0^{2}-4\times 100\left(-10\right)}}{2\times 100}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 100 for a, 0 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\times 100\left(-10\right)}}{2\times 100}
Square 0.
t=\frac{0±\sqrt{-400\left(-10\right)}}{2\times 100}
Multiply -4 times 100.
t=\frac{0±\sqrt{4000}}{2\times 100}
Multiply -400 times -10.
t=\frac{0±20\sqrt{10}}{2\times 100}
Take the square root of 4000.
t=\frac{0±20\sqrt{10}}{200}
Multiply 2 times 100.
t=\frac{\sqrt{10}}{10}
Now solve the equation t=\frac{0±20\sqrt{10}}{200} when ± is plus.
t=-\frac{\sqrt{10}}{10}
Now solve the equation t=\frac{0±20\sqrt{10}}{200} when ± is minus.
t=\frac{\sqrt{10}}{10} t=-\frac{\sqrt{10}}{10}
The equation is now solved.