Solve for x
x=1
x=3
Graph
Share
Copied to clipboard
500+400x-100x^{2}=800
Use the distributive property to multiply 1+x by 500-100x and combine like terms.
500+400x-100x^{2}-800=0
Subtract 800 from both sides.
-300+400x-100x^{2}=0
Subtract 800 from 500 to get -300.
-100x^{2}+400x-300=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-400±\sqrt{400^{2}-4\left(-100\right)\left(-300\right)}}{2\left(-100\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -100 for a, 400 for b, and -300 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-400±\sqrt{160000-4\left(-100\right)\left(-300\right)}}{2\left(-100\right)}
Square 400.
x=\frac{-400±\sqrt{160000+400\left(-300\right)}}{2\left(-100\right)}
Multiply -4 times -100.
x=\frac{-400±\sqrt{160000-120000}}{2\left(-100\right)}
Multiply 400 times -300.
x=\frac{-400±\sqrt{40000}}{2\left(-100\right)}
Add 160000 to -120000.
x=\frac{-400±200}{2\left(-100\right)}
Take the square root of 40000.
x=\frac{-400±200}{-200}
Multiply 2 times -100.
x=-\frac{200}{-200}
Now solve the equation x=\frac{-400±200}{-200} when ± is plus. Add -400 to 200.
x=1
Divide -200 by -200.
x=-\frac{600}{-200}
Now solve the equation x=\frac{-400±200}{-200} when ± is minus. Subtract 200 from -400.
x=3
Divide -600 by -200.
x=1 x=3
The equation is now solved.
500+400x-100x^{2}=800
Use the distributive property to multiply 1+x by 500-100x and combine like terms.
400x-100x^{2}=800-500
Subtract 500 from both sides.
400x-100x^{2}=300
Subtract 500 from 800 to get 300.
-100x^{2}+400x=300
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-100x^{2}+400x}{-100}=\frac{300}{-100}
Divide both sides by -100.
x^{2}+\frac{400}{-100}x=\frac{300}{-100}
Dividing by -100 undoes the multiplication by -100.
x^{2}-4x=\frac{300}{-100}
Divide 400 by -100.
x^{2}-4x=-3
Divide 300 by -100.
x^{2}-4x+\left(-2\right)^{2}=-3+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-3+4
Square -2.
x^{2}-4x+4=1
Add -3 to 4.
\left(x-2\right)^{2}=1
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
x-2=1 x-2=-1
Simplify.
x=3 x=1
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}