Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

1+3x+3x^{2}+x^{3}=27
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(1+x\right)^{3}.
1+3x+3x^{2}+x^{3}-27=0
Subtract 27 from both sides.
-26+3x+3x^{2}+x^{3}=0
Subtract 27 from 1 to get -26.
x^{3}+3x^{2}+3x-26=0
Rearrange the equation to put it in standard form. Place the terms in order from highest to lowest power.
±26,±13,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -26 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=2
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{2}+5x+13=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{3}+3x^{2}+3x-26 by x-2 to get x^{2}+5x+13. Solve the equation where the result equals to 0.
x=\frac{-5±\sqrt{5^{2}-4\times 1\times 13}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 5 for b, and 13 for c in the quadratic formula.
x=\frac{-5±\sqrt{-27}}{2}
Do the calculations.
x=\frac{-3i\sqrt{3}-5}{2} x=\frac{-5+3i\sqrt{3}}{2}
Solve the equation x^{2}+5x+13=0 when ± is plus and when ± is minus.
x=2 x=\frac{-3i\sqrt{3}-5}{2} x=\frac{-5+3i\sqrt{3}}{2}
List all found solutions.
1+3x+3x^{2}+x^{3}=27
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(1+x\right)^{3}.
1+3x+3x^{2}+x^{3}-27=0
Subtract 27 from both sides.
-26+3x+3x^{2}+x^{3}=0
Subtract 27 from 1 to get -26.
x^{3}+3x^{2}+3x-26=0
Rearrange the equation to put it in standard form. Place the terms in order from highest to lowest power.
±26,±13,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -26 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=2
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{2}+5x+13=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{3}+3x^{2}+3x-26 by x-2 to get x^{2}+5x+13. Solve the equation where the result equals to 0.
x=\frac{-5±\sqrt{5^{2}-4\times 1\times 13}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 5 for b, and 13 for c in the quadratic formula.
x=\frac{-5±\sqrt{-27}}{2}
Do the calculations.
x\in \emptyset
Since the square root of a negative number is not defined in the real field, there are no solutions.
x=2
List all found solutions.