Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

\left(1+i\right)z=2-3i-5
Subtract 5 from both sides.
\left(1+i\right)z=2-5-3i
Subtract 5 from 2-3i by subtracting corresponding real and imaginary parts.
\left(1+i\right)z=-3-3i
Subtract 5 from 2 to get -3.
z=\frac{-3-3i}{1+i}
Divide both sides by 1+i.
z=\frac{\left(-3-3i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Multiply both numerator and denominator of \frac{-3-3i}{1+i} by the complex conjugate of the denominator, 1-i.
z=\frac{\left(-3-3i\right)\left(1-i\right)}{1^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{\left(-3-3i\right)\left(1-i\right)}{2}
By definition, i^{2} is -1. Calculate the denominator.
z=\frac{-3-3\left(-i\right)-3i-3\left(-1\right)i^{2}}{2}
Multiply complex numbers -3-3i and 1-i like you multiply binomials.
z=\frac{-3-3\left(-i\right)-3i-3\left(-1\right)\left(-1\right)}{2}
By definition, i^{2} is -1.
z=\frac{-3+3i-3i-3}{2}
Do the multiplications in -3-3\left(-i\right)-3i-3\left(-1\right)\left(-1\right).
z=\frac{-3-3+\left(3-3\right)i}{2}
Combine the real and imaginary parts in -3+3i-3i-3.
z=\frac{-6}{2}
Do the additions in -3-3+\left(3-3\right)i.
z=-3
Divide -6 by 2 to get -3.