Solve for x
x=\left(-\frac{1}{2}-\frac{3}{2}i\right)y+\left(\frac{5}{2}+\frac{3}{2}i\right)
Solve for y
y=\left(-\frac{1}{5}+\frac{3}{5}i\right)x+\left(\frac{7}{5}-\frac{6}{5}i\right)
Share
Copied to clipboard
\left(1+i\right)x=1+4i+\left(1-2i\right)y
Add \left(1-2i\right)y to both sides.
\left(1+i\right)x=\left(1-2i\right)y+\left(1+4i\right)
The equation is in standard form.
\frac{\left(1+i\right)x}{1+i}=\frac{\left(1-2i\right)y+\left(1+4i\right)}{1+i}
Divide both sides by 1+i.
x=\frac{\left(1-2i\right)y+\left(1+4i\right)}{1+i}
Dividing by 1+i undoes the multiplication by 1+i.
x=\left(-\frac{1}{2}-\frac{3}{2}i\right)y+\left(\frac{5}{2}+\frac{3}{2}i\right)
Divide 1+4i+\left(1-2i\right)y by 1+i.
\left(1+i\right)x+\left(-1+2i\right)y=1+4i
Multiply -1 and 1-2i to get -1+2i.
\left(-1+2i\right)y=1+4i-\left(1+i\right)x
Subtract \left(1+i\right)x from both sides.
\left(-1+2i\right)y=\left(-1-i\right)x+\left(1+4i\right)
The equation is in standard form.
\frac{\left(-1+2i\right)y}{-1+2i}=\frac{\left(-1-i\right)x+\left(1+4i\right)}{-1+2i}
Divide both sides by -1+2i.
y=\frac{\left(-1-i\right)x+\left(1+4i\right)}{-1+2i}
Dividing by -1+2i undoes the multiplication by -1+2i.
y=\left(-\frac{1}{5}+\frac{3}{5}i\right)x+\left(\frac{7}{5}-\frac{6}{5}i\right)
Divide 1+4i+\left(-1-i\right)x by -1+2i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}