Solve for x
x=\left(\frac{1}{2}+\frac{1}{2}i\right)y+\left(\frac{1}{2}-\frac{1}{2}i\right)
Solve for y
y=\left(1-i\right)x+i
Share
Copied to clipboard
\left(1+i\right)x=iy+1
The equation is in standard form.
\frac{\left(1+i\right)x}{1+i}=\frac{iy+1}{1+i}
Divide both sides by 1+i.
x=\frac{iy+1}{1+i}
Dividing by 1+i undoes the multiplication by 1+i.
x=\left(\frac{1}{2}+\frac{1}{2}i\right)y+\left(\frac{1}{2}-\frac{1}{2}i\right)
Divide 1+iy by 1+i.
1+yi=\left(1+i\right)x
Swap sides so that all variable terms are on the left hand side.
yi=\left(1+i\right)x-1
Subtract 1 from both sides.
iy=\left(1+i\right)x-1
The equation is in standard form.
\frac{iy}{i}=\frac{\left(1+i\right)x-1}{i}
Divide both sides by i.
y=\frac{\left(1+i\right)x-1}{i}
Dividing by i undoes the multiplication by i.
y=\left(1-i\right)x+i
Divide \left(1+i\right)x-1 by i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}