Solve for x
x=\frac{7}{4}+\frac{21}{4}i-iy
Solve for y
y=ix+\left(\frac{21}{4}-\frac{7}{4}i\right)
Quiz
Complex Number
5 problems similar to:
( 1 + i ) \cdot ( x + i y ) \cdot ( 4 - 2 i ) = 7 \cdot 5 i
Share
Copied to clipboard
\left(6+2i\right)\left(x+iy\right)=7\times \left(5i\right)
Multiply 1+i and 4-2i to get 6+2i.
\left(6+2i\right)x+\left(-2+6i\right)y=7\times \left(5i\right)
Use the distributive property to multiply 6+2i by x+iy.
\left(6+2i\right)x+\left(-2+6i\right)y=35i
Multiply 7 and 5i to get 35i.
\left(6+2i\right)x=35i-\left(-2+6i\right)y
Subtract \left(-2+6i\right)y from both sides.
\left(6+2i\right)x=35i+\left(2-6i\right)y
Multiply -1 and -2+6i to get 2-6i.
\left(6+2i\right)x=\left(2-6i\right)y+35i
The equation is in standard form.
\frac{\left(6+2i\right)x}{6+2i}=\frac{\left(2-6i\right)y+35i}{6+2i}
Divide both sides by 6+2i.
x=\frac{\left(2-6i\right)y+35i}{6+2i}
Dividing by 6+2i undoes the multiplication by 6+2i.
x=\frac{7}{4}+\frac{21}{4}i-iy
Divide 35i+\left(2-6i\right)y by 6+2i.
\left(6+2i\right)\left(x+iy\right)=7\times \left(5i\right)
Multiply 1+i and 4-2i to get 6+2i.
\left(6+2i\right)x+\left(-2+6i\right)y=7\times \left(5i\right)
Use the distributive property to multiply 6+2i by x+iy.
\left(6+2i\right)x+\left(-2+6i\right)y=35i
Multiply 7 and 5i to get 35i.
\left(-2+6i\right)y=35i-\left(6+2i\right)x
Subtract \left(6+2i\right)x from both sides.
\left(-2+6i\right)y=35i+\left(-6-2i\right)x
Multiply -1 and 6+2i to get -6-2i.
\left(-2+6i\right)y=\left(-6-2i\right)x+35i
The equation is in standard form.
\frac{\left(-2+6i\right)y}{-2+6i}=\frac{\left(-6-2i\right)x+35i}{-2+6i}
Divide both sides by -2+6i.
y=\frac{\left(-6-2i\right)x+35i}{-2+6i}
Dividing by -2+6i undoes the multiplication by -2+6i.
y=ix+\left(\frac{21}{4}-\frac{7}{4}i\right)
Divide 35i+\left(-6-2i\right)x by -2+6i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}