Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{2}-\frac{1}{2}i+\left(-\frac{2}{3}\right)^{-1}+\frac{3-i}{1-i\sqrt{2}}+\sqrt{2}i^{19}
Calculate 1+i to the power of -1 and get \frac{1}{2}-\frac{1}{2}i.
\frac{1}{2}-\frac{1}{2}i-\frac{3}{2}+\frac{3-i}{1-i\sqrt{2}}+\sqrt{2}i^{19}
Calculate -\frac{2}{3} to the power of -1 and get -\frac{3}{2}.
\frac{3-i}{1-i\sqrt{2}}+\sqrt{2}i^{19}-1-\frac{1}{2}i
Do the additions.
\frac{3-i}{1-i\sqrt{2}}+\sqrt{2}\left(-i\right)-1-\frac{1}{2}i
Calculate i to the power of 19 and get -i.
\frac{\left(3-i\right)\left(1+i\sqrt{2}\right)}{\left(1-i\sqrt{2}\right)\left(1+i\sqrt{2}\right)}+\sqrt{2}\left(-i\right)-1-\frac{1}{2}i
Rationalize the denominator of \frac{3-i}{1-i\sqrt{2}} by multiplying numerator and denominator by 1+i\sqrt{2}.
\frac{\left(3-i\right)\left(1+i\sqrt{2}\right)}{1^{2}-\left(-i\sqrt{2}\right)^{2}}+\sqrt{2}\left(-i\right)-1-\frac{1}{2}i
Consider \left(1-i\sqrt{2}\right)\left(1+i\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3-i\right)\left(1+i\sqrt{2}\right)}{1-\left(-i\sqrt{2}\right)^{2}}+\sqrt{2}\left(-i\right)-1-\frac{1}{2}i
Calculate 1 to the power of 2 and get 1.
\frac{\left(3-i\right)\left(1+i\sqrt{2}\right)}{1-\left(-i\right)^{2}\left(\sqrt{2}\right)^{2}}+\sqrt{2}\left(-i\right)-1-\frac{1}{2}i
Expand \left(-i\sqrt{2}\right)^{2}.
\frac{\left(3-i\right)\left(1+i\sqrt{2}\right)}{1-\left(-\left(\sqrt{2}\right)^{2}\right)}+\sqrt{2}\left(-i\right)-1-\frac{1}{2}i
Calculate -i to the power of 2 and get -1.
\frac{\left(3-i\right)\left(1+i\sqrt{2}\right)}{1-\left(-2\right)}+\sqrt{2}\left(-i\right)-1-\frac{1}{2}i
The square of \sqrt{2} is 2.
\frac{\left(3-i\right)\left(1+i\sqrt{2}\right)}{1+2}+\sqrt{2}\left(-i\right)-1-\frac{1}{2}i
Multiply -1 and -2 to get 2.
\frac{\left(3-i\right)\left(1+i\sqrt{2}\right)}{3}+\sqrt{2}\left(-i\right)-1-\frac{1}{2}i
Add 1 and 2 to get 3.
\left(1-\frac{1}{3}i\right)\left(1+i\sqrt{2}\right)+\sqrt{2}\left(-i\right)-1-\frac{1}{2}i
Divide \left(3-i\right)\left(1+i\sqrt{2}\right) by 3 to get \left(1-\frac{1}{3}i\right)\left(1+i\sqrt{2}\right).
1-\frac{1}{3}i+\left(\frac{1}{3}+i\right)\sqrt{2}+\sqrt{2}\left(-i\right)-1-\frac{1}{2}i
Use the distributive property to multiply 1-\frac{1}{3}i by 1+i\sqrt{2}.
\left(\frac{1}{3}+i\right)\sqrt{2}+\sqrt{2}\left(-i\right)-\frac{5}{6}i
Do the additions.
\frac{1}{3}\sqrt{2}-\frac{5}{6}i
Combine \left(\frac{1}{3}+i\right)\sqrt{2} and \sqrt{2}\left(-i\right) to get \frac{1}{3}\sqrt{2}.