Skip to main content
Solve for d
Tick mark Image

Share

\left(1+e^{\frac{x}{y}}\right)dxy+e^{\frac{x}{y}}\left(1-\frac{x}{y}\right)dyy=0
Multiply both sides of the equation by y.
\left(1+e^{\frac{x}{y}}\right)dxy+e^{\frac{x}{y}}\left(1-\frac{x}{y}\right)dy^{2}=0
Multiply y and y to get y^{2}.
\left(d+e^{\frac{x}{y}}d\right)xy+e^{\frac{x}{y}}\left(1-\frac{x}{y}\right)dy^{2}=0
Use the distributive property to multiply 1+e^{\frac{x}{y}} by d.
\left(dx+e^{\frac{x}{y}}dx\right)y+e^{\frac{x}{y}}\left(1-\frac{x}{y}\right)dy^{2}=0
Use the distributive property to multiply d+e^{\frac{x}{y}}d by x.
dxy+e^{\frac{x}{y}}dxy+e^{\frac{x}{y}}\left(1-\frac{x}{y}\right)dy^{2}=0
Use the distributive property to multiply dx+e^{\frac{x}{y}}dx by y.
dxy+e^{\frac{x}{y}}dxy+e^{\frac{x}{y}}\left(\frac{y}{y}-\frac{x}{y}\right)dy^{2}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{y}{y}.
dxy+e^{\frac{x}{y}}dxy+e^{\frac{x}{y}}\times \frac{y-x}{y}dy^{2}=0
Since \frac{y}{y} and \frac{x}{y} have the same denominator, subtract them by subtracting their numerators.
dxy+e^{\frac{x}{y}}dxy+e^{\frac{x}{y}}\times \frac{\left(y-x\right)d}{y}y^{2}=0
Express \frac{y-x}{y}d as a single fraction.
dxy+e^{\frac{x}{y}}dxy+e^{\frac{x}{y}}\times \frac{\left(y-x\right)dy^{2}}{y}=0
Express \frac{\left(y-x\right)d}{y}y^{2} as a single fraction.
dxy+e^{\frac{x}{y}}dxy+e^{\frac{x}{y}}dy\left(-x+y\right)=0
Cancel out y in both numerator and denominator.
dxy+e^{\frac{x}{y}}dxy-e^{\frac{x}{y}}dyx+e^{\frac{x}{y}}dy^{2}=0
Use the distributive property to multiply e^{\frac{x}{y}}dy by -x+y.
dxy+e^{\frac{x}{y}}dy^{2}=0
Combine e^{\frac{x}{y}}dxy and -e^{\frac{x}{y}}dyx to get 0.
\left(xy+e^{\frac{x}{y}}y^{2}\right)d=0
Combine all terms containing d.
\left(xy+y^{2}e^{\frac{x}{y}}\right)d=0
The equation is in standard form.
d=0
Divide 0 by xy+e^{xy^{-1}}y^{2}.