Skip to main content
Solve for d (complex solution)
Tick mark Image
Solve for d
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(1+e^{\frac{x}{8}}\right)dxy+e^{\frac{x}{7}}\left(1-\frac{x}{y}\right)dyy=0
Multiply both sides of the equation by y.
\left(1+e^{\frac{x}{8}}\right)dxy+e^{\frac{x}{7}}\left(1-\frac{x}{y}\right)dy^{2}=0
Multiply y and y to get y^{2}.
\left(d+e^{\frac{x}{8}}d\right)xy+e^{\frac{x}{7}}\left(1-\frac{x}{y}\right)dy^{2}=0
Use the distributive property to multiply 1+e^{\frac{x}{8}} by d.
\left(dx+e^{\frac{x}{8}}dx\right)y+e^{\frac{x}{7}}\left(1-\frac{x}{y}\right)dy^{2}=0
Use the distributive property to multiply d+e^{\frac{x}{8}}d by x.
dxy+e^{\frac{x}{8}}dxy+e^{\frac{x}{7}}\left(1-\frac{x}{y}\right)dy^{2}=0
Use the distributive property to multiply dx+e^{\frac{x}{8}}dx by y.
dxy+e^{\frac{x}{8}}dxy+e^{\frac{x}{7}}\left(\frac{y}{y}-\frac{x}{y}\right)dy^{2}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{y}{y}.
dxy+e^{\frac{x}{8}}dxy+e^{\frac{x}{7}}\times \frac{y-x}{y}dy^{2}=0
Since \frac{y}{y} and \frac{x}{y} have the same denominator, subtract them by subtracting their numerators.
dxy+e^{\frac{x}{8}}dxy+e^{\frac{x}{7}}\times \frac{\left(y-x\right)d}{y}y^{2}=0
Express \frac{y-x}{y}d as a single fraction.
dxy+e^{\frac{x}{8}}dxy+e^{\frac{x}{7}}\times \frac{\left(y-x\right)dy^{2}}{y}=0
Express \frac{\left(y-x\right)d}{y}y^{2} as a single fraction.
dxy+e^{\frac{x}{8}}dxy+e^{\frac{x}{7}}dy\left(-x+y\right)=0
Cancel out y in both numerator and denominator.
dxy+e^{\frac{x}{8}}dxy-e^{\frac{x}{7}}dyx+e^{\frac{x}{7}}dy^{2}=0
Use the distributive property to multiply e^{\frac{x}{7}}dy by -x+y.
\left(xy+e^{\frac{x}{8}}xy-e^{\frac{x}{7}}yx+e^{\frac{x}{7}}y^{2}\right)d=0
Combine all terms containing d.
\left(xye^{\frac{x}{8}}-xye^{\frac{x}{7}}+xy+y^{2}e^{\frac{x}{7}}\right)d=0
The equation is in standard form.
d=0
Divide 0 by xy+e^{\frac{1}{8}x}xy-e^{\frac{1}{7}x}yx+e^{\frac{1}{7}x}y^{2}.
\left(1+e^{\frac{x}{8}}\right)dxy+e^{\frac{x}{7}}\left(1-\frac{x}{y}\right)dyy=0
Multiply both sides of the equation by y.
\left(1+e^{\frac{x}{8}}\right)dxy+e^{\frac{x}{7}}\left(1-\frac{x}{y}\right)dy^{2}=0
Multiply y and y to get y^{2}.
\left(d+e^{\frac{x}{8}}d\right)xy+e^{\frac{x}{7}}\left(1-\frac{x}{y}\right)dy^{2}=0
Use the distributive property to multiply 1+e^{\frac{x}{8}} by d.
\left(dx+e^{\frac{x}{8}}dx\right)y+e^{\frac{x}{7}}\left(1-\frac{x}{y}\right)dy^{2}=0
Use the distributive property to multiply d+e^{\frac{x}{8}}d by x.
dxy+e^{\frac{x}{8}}dxy+e^{\frac{x}{7}}\left(1-\frac{x}{y}\right)dy^{2}=0
Use the distributive property to multiply dx+e^{\frac{x}{8}}dx by y.
dxy+e^{\frac{x}{8}}dxy+e^{\frac{x}{7}}\left(\frac{y}{y}-\frac{x}{y}\right)dy^{2}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{y}{y}.
dxy+e^{\frac{x}{8}}dxy+e^{\frac{x}{7}}\times \frac{y-x}{y}dy^{2}=0
Since \frac{y}{y} and \frac{x}{y} have the same denominator, subtract them by subtracting their numerators.
dxy+e^{\frac{x}{8}}dxy+e^{\frac{x}{7}}\times \frac{\left(y-x\right)d}{y}y^{2}=0
Express \frac{y-x}{y}d as a single fraction.
dxy+e^{\frac{x}{8}}dxy+e^{\frac{x}{7}}\times \frac{\left(y-x\right)dy^{2}}{y}=0
Express \frac{\left(y-x\right)d}{y}y^{2} as a single fraction.
dxy+e^{\frac{x}{8}}dxy+e^{\frac{x}{7}}dy\left(-x+y\right)=0
Cancel out y in both numerator and denominator.
dxy+e^{\frac{x}{8}}dxy-e^{\frac{x}{7}}dyx+e^{\frac{x}{7}}dy^{2}=0
Use the distributive property to multiply e^{\frac{x}{7}}dy by -x+y.
\left(xy+e^{\frac{x}{8}}xy-e^{\frac{x}{7}}yx+e^{\frac{x}{7}}y^{2}\right)d=0
Combine all terms containing d.
\left(xye^{\frac{x}{8}}-xye^{\frac{x}{7}}+xy+y^{2}e^{\frac{x}{7}}\right)d=0
The equation is in standard form.
d=0
Divide 0 by xy+e^{\frac{1}{8}x}xy-e^{\frac{1}{7}x}yx+e^{\frac{1}{7}x}y^{2}.