( 1 + e ^ { \frac { x } { 8 } } ) d x + e ^ { \frac { x } { 7 } } ( 1 - \frac { x } { y } ) d y = 0
Solve for d (complex solution)
\left\{\begin{matrix}d=0\text{, }&y\neq 0\\d\in \mathrm{C}\text{, }&y=x-xe^{-\frac{x}{56}}-xe^{-\frac{x}{7}}\text{ and }x-xe^{-\frac{x}{56}}-xe^{-\frac{x}{7}}\neq 0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}d=0\text{, }&y\neq 0\\d\in \mathrm{R}\text{, }&y=x-xe^{-\frac{x}{56}}-xe^{-\frac{x}{7}}\text{ and }x-xe^{-\frac{x}{56}}-xe^{-\frac{x}{7}}\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(1+e^{\frac{x}{8}}\right)dxy+e^{\frac{x}{7}}\left(1-\frac{x}{y}\right)dyy=0
Multiply both sides of the equation by y.
\left(1+e^{\frac{x}{8}}\right)dxy+e^{\frac{x}{7}}\left(1-\frac{x}{y}\right)dy^{2}=0
Multiply y and y to get y^{2}.
\left(d+e^{\frac{x}{8}}d\right)xy+e^{\frac{x}{7}}\left(1-\frac{x}{y}\right)dy^{2}=0
Use the distributive property to multiply 1+e^{\frac{x}{8}} by d.
\left(dx+e^{\frac{x}{8}}dx\right)y+e^{\frac{x}{7}}\left(1-\frac{x}{y}\right)dy^{2}=0
Use the distributive property to multiply d+e^{\frac{x}{8}}d by x.
dxy+e^{\frac{x}{8}}dxy+e^{\frac{x}{7}}\left(1-\frac{x}{y}\right)dy^{2}=0
Use the distributive property to multiply dx+e^{\frac{x}{8}}dx by y.
dxy+e^{\frac{x}{8}}dxy+e^{\frac{x}{7}}\left(\frac{y}{y}-\frac{x}{y}\right)dy^{2}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{y}{y}.
dxy+e^{\frac{x}{8}}dxy+e^{\frac{x}{7}}\times \frac{y-x}{y}dy^{2}=0
Since \frac{y}{y} and \frac{x}{y} have the same denominator, subtract them by subtracting their numerators.
dxy+e^{\frac{x}{8}}dxy+e^{\frac{x}{7}}\times \frac{\left(y-x\right)d}{y}y^{2}=0
Express \frac{y-x}{y}d as a single fraction.
dxy+e^{\frac{x}{8}}dxy+e^{\frac{x}{7}}\times \frac{\left(y-x\right)dy^{2}}{y}=0
Express \frac{\left(y-x\right)d}{y}y^{2} as a single fraction.
dxy+e^{\frac{x}{8}}dxy+e^{\frac{x}{7}}dy\left(-x+y\right)=0
Cancel out y in both numerator and denominator.
dxy+e^{\frac{x}{8}}dxy-e^{\frac{x}{7}}dyx+e^{\frac{x}{7}}dy^{2}=0
Use the distributive property to multiply e^{\frac{x}{7}}dy by -x+y.
\left(xy+e^{\frac{x}{8}}xy-e^{\frac{x}{7}}yx+e^{\frac{x}{7}}y^{2}\right)d=0
Combine all terms containing d.
\left(xye^{\frac{x}{8}}-xye^{\frac{x}{7}}+xy+y^{2}e^{\frac{x}{7}}\right)d=0
The equation is in standard form.
d=0
Divide 0 by xy+e^{\frac{1}{8}x}xy-e^{\frac{1}{7}x}yx+e^{\frac{1}{7}x}y^{2}.
\left(1+e^{\frac{x}{8}}\right)dxy+e^{\frac{x}{7}}\left(1-\frac{x}{y}\right)dyy=0
Multiply both sides of the equation by y.
\left(1+e^{\frac{x}{8}}\right)dxy+e^{\frac{x}{7}}\left(1-\frac{x}{y}\right)dy^{2}=0
Multiply y and y to get y^{2}.
\left(d+e^{\frac{x}{8}}d\right)xy+e^{\frac{x}{7}}\left(1-\frac{x}{y}\right)dy^{2}=0
Use the distributive property to multiply 1+e^{\frac{x}{8}} by d.
\left(dx+e^{\frac{x}{8}}dx\right)y+e^{\frac{x}{7}}\left(1-\frac{x}{y}\right)dy^{2}=0
Use the distributive property to multiply d+e^{\frac{x}{8}}d by x.
dxy+e^{\frac{x}{8}}dxy+e^{\frac{x}{7}}\left(1-\frac{x}{y}\right)dy^{2}=0
Use the distributive property to multiply dx+e^{\frac{x}{8}}dx by y.
dxy+e^{\frac{x}{8}}dxy+e^{\frac{x}{7}}\left(\frac{y}{y}-\frac{x}{y}\right)dy^{2}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{y}{y}.
dxy+e^{\frac{x}{8}}dxy+e^{\frac{x}{7}}\times \frac{y-x}{y}dy^{2}=0
Since \frac{y}{y} and \frac{x}{y} have the same denominator, subtract them by subtracting their numerators.
dxy+e^{\frac{x}{8}}dxy+e^{\frac{x}{7}}\times \frac{\left(y-x\right)d}{y}y^{2}=0
Express \frac{y-x}{y}d as a single fraction.
dxy+e^{\frac{x}{8}}dxy+e^{\frac{x}{7}}\times \frac{\left(y-x\right)dy^{2}}{y}=0
Express \frac{\left(y-x\right)d}{y}y^{2} as a single fraction.
dxy+e^{\frac{x}{8}}dxy+e^{\frac{x}{7}}dy\left(-x+y\right)=0
Cancel out y in both numerator and denominator.
dxy+e^{\frac{x}{8}}dxy-e^{\frac{x}{7}}dyx+e^{\frac{x}{7}}dy^{2}=0
Use the distributive property to multiply e^{\frac{x}{7}}dy by -x+y.
\left(xy+e^{\frac{x}{8}}xy-e^{\frac{x}{7}}yx+e^{\frac{x}{7}}y^{2}\right)d=0
Combine all terms containing d.
\left(xye^{\frac{x}{8}}-xye^{\frac{x}{7}}+xy+y^{2}e^{\frac{x}{7}}\right)d=0
The equation is in standard form.
d=0
Divide 0 by xy+e^{\frac{1}{8}x}xy-e^{\frac{1}{7}x}yx+e^{\frac{1}{7}x}y^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}