( 1 + M ( R R ) = \sqrt[ 6 ] { 2 \cdot 463 }
Solve for M
M=\frac{\sqrt[6]{926}-1}{R^{2}}
R\neq 0
Solve for R (complex solution)
R=-\sqrt{\sqrt[6]{926}-1}M^{-\frac{1}{2}}
R=\sqrt{\sqrt[6]{926}-1}M^{-\frac{1}{2}}\text{, }M\neq 0
Solve for R
R=\sqrt{\frac{\sqrt[6]{926}-1}{M}}
R=-\sqrt{\frac{\sqrt[6]{926}-1}{M}}\text{, }M>0
Share
Copied to clipboard
1+MR^{2}=\sqrt[6]{2\times 463}
Multiply R and R to get R^{2}.
1+MR^{2}=\sqrt[6]{926}
Multiply 2 and 463 to get 926.
MR^{2}=\sqrt[6]{926}-1
Subtract 1 from both sides.
R^{2}M=\sqrt[6]{926}-1
The equation is in standard form.
\frac{R^{2}M}{R^{2}}=\frac{\sqrt[6]{926}-1}{R^{2}}
Divide both sides by R^{2}.
M=\frac{\sqrt[6]{926}-1}{R^{2}}
Dividing by R^{2} undoes the multiplication by R^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}