Solve for A (complex solution)
A=\frac{1+2x-x^{2}}{x^{2}-1}
x\neq -1\text{ and }x\neq 1
Solve for A
A=-\frac{x^{2}-2x-1}{x^{2}-1}
|x|\neq 1
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{A^{2}+2A+2}+1}{A+1}\text{; }x=\frac{-\sqrt{A^{2}+2A+2}+1}{A+1}\text{, }&A\neq -1\\x=0\text{, }&A=-1\end{matrix}\right.
Graph
Share
Copied to clipboard
x^{2}+Ax^{2}-2x-\left(1+A\right)=0
Use the distributive property to multiply 1+A by x^{2}.
x^{2}+Ax^{2}-2x-1-A=0
To find the opposite of 1+A, find the opposite of each term.
Ax^{2}-2x-1-A=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
Ax^{2}-1-A=-x^{2}+2x
Add 2x to both sides.
Ax^{2}-A=-x^{2}+2x+1
Add 1 to both sides.
\left(x^{2}-1\right)A=-x^{2}+2x+1
Combine all terms containing A.
\left(x^{2}-1\right)A=1+2x-x^{2}
The equation is in standard form.
\frac{\left(x^{2}-1\right)A}{x^{2}-1}=\frac{1+2x-x^{2}}{x^{2}-1}
Divide both sides by x^{2}-1.
A=\frac{1+2x-x^{2}}{x^{2}-1}
Dividing by x^{2}-1 undoes the multiplication by x^{2}-1.
x^{2}+Ax^{2}-2x-\left(1+A\right)=0
Use the distributive property to multiply 1+A by x^{2}.
x^{2}+Ax^{2}-2x-1-A=0
To find the opposite of 1+A, find the opposite of each term.
Ax^{2}-2x-1-A=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
Ax^{2}-1-A=-x^{2}+2x
Add 2x to both sides.
Ax^{2}-A=-x^{2}+2x+1
Add 1 to both sides.
\left(x^{2}-1\right)A=-x^{2}+2x+1
Combine all terms containing A.
\left(x^{2}-1\right)A=1+2x-x^{2}
The equation is in standard form.
\frac{\left(x^{2}-1\right)A}{x^{2}-1}=\frac{1+2x-x^{2}}{x^{2}-1}
Divide both sides by x^{2}-1.
A=\frac{1+2x-x^{2}}{x^{2}-1}
Dividing by x^{2}-1 undoes the multiplication by x^{2}-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}