( 1 + 40 \% ) x \times 80 \% = 120
Solve for x
x = \frac{750}{7} = 107\frac{1}{7} \approx 107.142857143
Graph
Share
Copied to clipboard
\left(1+\frac{2}{5}\right)x\times \frac{80}{100}=120
Reduce the fraction \frac{40}{100} to lowest terms by extracting and canceling out 20.
\left(\frac{5}{5}+\frac{2}{5}\right)x\times \frac{80}{100}=120
Convert 1 to fraction \frac{5}{5}.
\frac{5+2}{5}x\times \frac{80}{100}=120
Since \frac{5}{5} and \frac{2}{5} have the same denominator, add them by adding their numerators.
\frac{7}{5}x\times \frac{80}{100}=120
Add 5 and 2 to get 7.
\frac{7}{5}x\times \frac{4}{5}=120
Reduce the fraction \frac{80}{100} to lowest terms by extracting and canceling out 20.
\frac{7\times 4}{5\times 5}x=120
Multiply \frac{7}{5} times \frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{28}{25}x=120
Do the multiplications in the fraction \frac{7\times 4}{5\times 5}.
x=120\times \frac{25}{28}
Multiply both sides by \frac{25}{28}, the reciprocal of \frac{28}{25}.
x=\frac{120\times 25}{28}
Express 120\times \frac{25}{28} as a single fraction.
x=\frac{3000}{28}
Multiply 120 and 25 to get 3000.
x=\frac{750}{7}
Reduce the fraction \frac{3000}{28} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}