Solve for z
z=\frac{\sqrt{6}}{4}\approx 0.612372436
z=-\frac{\sqrt{6}}{4}\approx -0.612372436
Share
Copied to clipboard
1+6z+12z^{2}+8z^{3}-\left(z+2\right)\left(z^{2}-2z+4\right)=3\left(\frac{3}{2}+2z\right)+7\left(z^{3}-1\right)
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(1+2z\right)^{3}.
1+6z+12z^{2}+8z^{3}-\left(z^{3}+8\right)=3\left(\frac{3}{2}+2z\right)+7\left(z^{3}-1\right)
Use the distributive property to multiply z+2 by z^{2}-2z+4 and combine like terms.
1+6z+12z^{2}+8z^{3}-z^{3}-8=3\left(\frac{3}{2}+2z\right)+7\left(z^{3}-1\right)
To find the opposite of z^{3}+8, find the opposite of each term.
1+6z+12z^{2}+7z^{3}-8=3\left(\frac{3}{2}+2z\right)+7\left(z^{3}-1\right)
Combine 8z^{3} and -z^{3} to get 7z^{3}.
-7+6z+12z^{2}+7z^{3}=3\left(\frac{3}{2}+2z\right)+7\left(z^{3}-1\right)
Subtract 8 from 1 to get -7.
-7+6z+12z^{2}+7z^{3}=\frac{9}{2}+6z+7\left(z^{3}-1\right)
Use the distributive property to multiply 3 by \frac{3}{2}+2z.
-7+6z+12z^{2}+7z^{3}=\frac{9}{2}+6z+7z^{3}-7
Use the distributive property to multiply 7 by z^{3}-1.
-7+6z+12z^{2}+7z^{3}=-\frac{5}{2}+6z+7z^{3}
Subtract 7 from \frac{9}{2} to get -\frac{5}{2}.
-7+6z+12z^{2}+7z^{3}-6z=-\frac{5}{2}+7z^{3}
Subtract 6z from both sides.
-7+12z^{2}+7z^{3}=-\frac{5}{2}+7z^{3}
Combine 6z and -6z to get 0.
-7+12z^{2}+7z^{3}-7z^{3}=-\frac{5}{2}
Subtract 7z^{3} from both sides.
-7+12z^{2}=-\frac{5}{2}
Combine 7z^{3} and -7z^{3} to get 0.
12z^{2}=-\frac{5}{2}+7
Add 7 to both sides.
12z^{2}=\frac{9}{2}
Add -\frac{5}{2} and 7 to get \frac{9}{2}.
z^{2}=\frac{\frac{9}{2}}{12}
Divide both sides by 12.
z^{2}=\frac{9}{2\times 12}
Express \frac{\frac{9}{2}}{12} as a single fraction.
z^{2}=\frac{9}{24}
Multiply 2 and 12 to get 24.
z^{2}=\frac{3}{8}
Reduce the fraction \frac{9}{24} to lowest terms by extracting and canceling out 3.
z=\frac{\sqrt{6}}{4} z=-\frac{\sqrt{6}}{4}
Take the square root of both sides of the equation.
1+6z+12z^{2}+8z^{3}-\left(z+2\right)\left(z^{2}-2z+4\right)=3\left(\frac{3}{2}+2z\right)+7\left(z^{3}-1\right)
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(1+2z\right)^{3}.
1+6z+12z^{2}+8z^{3}-\left(z^{3}+8\right)=3\left(\frac{3}{2}+2z\right)+7\left(z^{3}-1\right)
Use the distributive property to multiply z+2 by z^{2}-2z+4 and combine like terms.
1+6z+12z^{2}+8z^{3}-z^{3}-8=3\left(\frac{3}{2}+2z\right)+7\left(z^{3}-1\right)
To find the opposite of z^{3}+8, find the opposite of each term.
1+6z+12z^{2}+7z^{3}-8=3\left(\frac{3}{2}+2z\right)+7\left(z^{3}-1\right)
Combine 8z^{3} and -z^{3} to get 7z^{3}.
-7+6z+12z^{2}+7z^{3}=3\left(\frac{3}{2}+2z\right)+7\left(z^{3}-1\right)
Subtract 8 from 1 to get -7.
-7+6z+12z^{2}+7z^{3}=\frac{9}{2}+6z+7\left(z^{3}-1\right)
Use the distributive property to multiply 3 by \frac{3}{2}+2z.
-7+6z+12z^{2}+7z^{3}=\frac{9}{2}+6z+7z^{3}-7
Use the distributive property to multiply 7 by z^{3}-1.
-7+6z+12z^{2}+7z^{3}=-\frac{5}{2}+6z+7z^{3}
Subtract 7 from \frac{9}{2} to get -\frac{5}{2}.
-7+6z+12z^{2}+7z^{3}-\left(-\frac{5}{2}\right)=6z+7z^{3}
Subtract -\frac{5}{2} from both sides.
-7+6z+12z^{2}+7z^{3}+\frac{5}{2}=6z+7z^{3}
The opposite of -\frac{5}{2} is \frac{5}{2}.
-7+6z+12z^{2}+7z^{3}+\frac{5}{2}-6z=7z^{3}
Subtract 6z from both sides.
-\frac{9}{2}+6z+12z^{2}+7z^{3}-6z=7z^{3}
Add -7 and \frac{5}{2} to get -\frac{9}{2}.
-\frac{9}{2}+12z^{2}+7z^{3}=7z^{3}
Combine 6z and -6z to get 0.
-\frac{9}{2}+12z^{2}+7z^{3}-7z^{3}=0
Subtract 7z^{3} from both sides.
-\frac{9}{2}+12z^{2}=0
Combine 7z^{3} and -7z^{3} to get 0.
12z^{2}-\frac{9}{2}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
z=\frac{0±\sqrt{0^{2}-4\times 12\left(-\frac{9}{2}\right)}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, 0 for b, and -\frac{9}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{0±\sqrt{-4\times 12\left(-\frac{9}{2}\right)}}{2\times 12}
Square 0.
z=\frac{0±\sqrt{-48\left(-\frac{9}{2}\right)}}{2\times 12}
Multiply -4 times 12.
z=\frac{0±\sqrt{216}}{2\times 12}
Multiply -48 times -\frac{9}{2}.
z=\frac{0±6\sqrt{6}}{2\times 12}
Take the square root of 216.
z=\frac{0±6\sqrt{6}}{24}
Multiply 2 times 12.
z=\frac{\sqrt{6}}{4}
Now solve the equation z=\frac{0±6\sqrt{6}}{24} when ± is plus.
z=-\frac{\sqrt{6}}{4}
Now solve the equation z=\frac{0±6\sqrt{6}}{24} when ± is minus.
z=\frac{\sqrt{6}}{4} z=-\frac{\sqrt{6}}{4}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}