Skip to main content
Solve for w
Tick mark Image

Similar Problems from Web Search

Share

\left(1+2i\right)w^{2}+4w+\left(-1+2i\right)=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
w=\frac{-4±\sqrt{4^{2}-4\left(1+2i\right)\left(-1+2i\right)}}{2\left(1+2i\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+2i for a, 4 for b, and -1+2i for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-4±\sqrt{16-4\left(1+2i\right)\left(-1+2i\right)}}{2\left(1+2i\right)}
Square 4.
w=\frac{-4±\sqrt{16+\left(-4-8i\right)\left(-1+2i\right)}}{2\left(1+2i\right)}
Multiply -4 times 1+2i.
w=\frac{-4±\sqrt{16+20}}{2\left(1+2i\right)}
Multiply -4-8i times -1+2i.
w=\frac{-4±\sqrt{36}}{2\left(1+2i\right)}
Add 16 to 20.
w=\frac{-4±6}{2\left(1+2i\right)}
Take the square root of 36.
w=\frac{-4±6}{2+4i}
Multiply 2 times 1+2i.
w=\frac{2}{2+4i}
Now solve the equation w=\frac{-4±6}{2+4i} when ± is plus. Add -4 to 6.
w=\frac{1}{5}-\frac{2}{5}i
Divide 2 by 2+4i.
w=-\frac{10}{2+4i}
Now solve the equation w=\frac{-4±6}{2+4i} when ± is minus. Subtract 6 from -4.
w=-1+2i
Divide -10 by 2+4i.
w=\frac{1}{5}-\frac{2}{5}i w=-1+2i
The equation is now solved.
\left(1+2i\right)w^{2}+4w+\left(-1+2i\right)=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\left(1+2i\right)w^{2}+4w+\left(-1+2i\right)-\left(-1+2i\right)=1-2i
Subtract -1+2i from both sides of the equation.
\left(1+2i\right)w^{2}+4w=1-2i
Subtracting -1+2i from itself leaves 0.
\frac{\left(1+2i\right)w^{2}+4w}{1+2i}=\frac{1-2i}{1+2i}
Divide both sides by 1+2i.
w^{2}+\frac{4}{1+2i}w=\frac{1-2i}{1+2i}
Dividing by 1+2i undoes the multiplication by 1+2i.
w^{2}+\left(\frac{4}{5}-\frac{8}{5}i\right)w=\frac{1-2i}{1+2i}
Divide 4 by 1+2i.
w^{2}+\left(\frac{4}{5}-\frac{8}{5}i\right)w=-\frac{3}{5}-\frac{4}{5}i
Divide 1-2i by 1+2i.
w^{2}+\left(\frac{4}{5}-\frac{8}{5}i\right)w+\left(\frac{2}{5}-\frac{4}{5}i\right)^{2}=-\frac{3}{5}-\frac{4}{5}i+\left(\frac{2}{5}-\frac{4}{5}i\right)^{2}
Divide \frac{4}{5}-\frac{8}{5}i, the coefficient of the x term, by 2 to get \frac{2}{5}-\frac{4}{5}i. Then add the square of \frac{2}{5}-\frac{4}{5}i to both sides of the equation. This step makes the left hand side of the equation a perfect square.
w^{2}+\left(\frac{4}{5}-\frac{8}{5}i\right)w+\left(-\frac{12}{25}-\frac{16}{25}i\right)=-\frac{3}{5}-\frac{4}{5}i+\left(-\frac{12}{25}-\frac{16}{25}i\right)
Square \frac{2}{5}-\frac{4}{5}i.
w^{2}+\left(\frac{4}{5}-\frac{8}{5}i\right)w+\left(-\frac{12}{25}-\frac{16}{25}i\right)=-\frac{27}{25}-\frac{36}{25}i
Add -\frac{3}{5}-\frac{4}{5}i to -\frac{12}{25}-\frac{16}{25}i.
\left(w+\left(\frac{2}{5}-\frac{4}{5}i\right)\right)^{2}=-\frac{27}{25}-\frac{36}{25}i
Factor w^{2}+\left(\frac{4}{5}-\frac{8}{5}i\right)w+\left(-\frac{12}{25}-\frac{16}{25}i\right). In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(w+\left(\frac{2}{5}-\frac{4}{5}i\right)\right)^{2}}=\sqrt{-\frac{27}{25}-\frac{36}{25}i}
Take the square root of both sides of the equation.
w+\left(\frac{2}{5}-\frac{4}{5}i\right)=\frac{3}{5}-\frac{6}{5}i w+\left(\frac{2}{5}-\frac{4}{5}i\right)=-\frac{3}{5}+\frac{6}{5}i
Simplify.
w=\frac{1}{5}-\frac{2}{5}i w=-1+2i
Subtract \frac{2}{5}-\frac{4}{5}i from both sides of the equation.