Skip to main content
Solve for a
Tick mark Image
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

-3+4i=\left(a+bi\right)\left(2-i\right)
Calculate 1+2i to the power of 2 and get -3+4i.
-3+4i=\left(2-i\right)a+\left(2-i\right)bi
Use the distributive property to multiply a+bi by 2-i.
-3+4i=\left(2-i\right)a+\left(1+2i\right)b
Multiply 2-i and i to get 1+2i.
\left(2-i\right)a+\left(1+2i\right)b=-3+4i
Swap sides so that all variable terms are on the left hand side.
\left(2-i\right)a=-3+4i-\left(1+2i\right)b
Subtract \left(1+2i\right)b from both sides.
\left(2-i\right)a=-3+4i+\left(-1-2i\right)b
Multiply -1 and 1+2i to get -1-2i.
\left(2-i\right)a=\left(-1-2i\right)b+\left(-3+4i\right)
The equation is in standard form.
\frac{\left(2-i\right)a}{2-i}=\frac{\left(-1-2i\right)b+\left(-3+4i\right)}{2-i}
Divide both sides by 2-i.
a=\frac{\left(-1-2i\right)b+\left(-3+4i\right)}{2-i}
Dividing by 2-i undoes the multiplication by 2-i.
a=-2+i-ib
Divide -3+4i+\left(-1-2i\right)b by 2-i.
-3+4i=\left(a+bi\right)\left(2-i\right)
Calculate 1+2i to the power of 2 and get -3+4i.
-3+4i=\left(2-i\right)a+\left(2-i\right)bi
Use the distributive property to multiply a+bi by 2-i.
-3+4i=\left(2-i\right)a+\left(1+2i\right)b
Multiply 2-i and i to get 1+2i.
\left(2-i\right)a+\left(1+2i\right)b=-3+4i
Swap sides so that all variable terms are on the left hand side.
\left(1+2i\right)b=-3+4i-\left(2-i\right)a
Subtract \left(2-i\right)a from both sides.
\left(1+2i\right)b=-3+4i+\left(-2+i\right)a
Multiply -1 and 2-i to get -2+i.
\left(1+2i\right)b=\left(-2+i\right)a+\left(-3+4i\right)
The equation is in standard form.
\frac{\left(1+2i\right)b}{1+2i}=\frac{\left(-2+i\right)a+\left(-3+4i\right)}{1+2i}
Divide both sides by 1+2i.
b=\frac{\left(-2+i\right)a+\left(-3+4i\right)}{1+2i}
Dividing by 1+2i undoes the multiplication by 1+2i.
b=ia+\left(1+2i\right)
Divide -3+4i+\left(-2+i\right)a by 1+2i.