Solve for a
a=-2+i-ib
Solve for b
b=ia+\left(1+2i\right)
Share
Copied to clipboard
-3+4i=\left(a+bi\right)\left(2-i\right)
Calculate 1+2i to the power of 2 and get -3+4i.
-3+4i=\left(2-i\right)a+\left(2-i\right)bi
Use the distributive property to multiply a+bi by 2-i.
-3+4i=\left(2-i\right)a+\left(1+2i\right)b
Multiply 2-i and i to get 1+2i.
\left(2-i\right)a+\left(1+2i\right)b=-3+4i
Swap sides so that all variable terms are on the left hand side.
\left(2-i\right)a=-3+4i-\left(1+2i\right)b
Subtract \left(1+2i\right)b from both sides.
\left(2-i\right)a=-3+4i+\left(-1-2i\right)b
Multiply -1 and 1+2i to get -1-2i.
\left(2-i\right)a=\left(-1-2i\right)b+\left(-3+4i\right)
The equation is in standard form.
\frac{\left(2-i\right)a}{2-i}=\frac{\left(-1-2i\right)b+\left(-3+4i\right)}{2-i}
Divide both sides by 2-i.
a=\frac{\left(-1-2i\right)b+\left(-3+4i\right)}{2-i}
Dividing by 2-i undoes the multiplication by 2-i.
a=-2+i-ib
Divide -3+4i+\left(-1-2i\right)b by 2-i.
-3+4i=\left(a+bi\right)\left(2-i\right)
Calculate 1+2i to the power of 2 and get -3+4i.
-3+4i=\left(2-i\right)a+\left(2-i\right)bi
Use the distributive property to multiply a+bi by 2-i.
-3+4i=\left(2-i\right)a+\left(1+2i\right)b
Multiply 2-i and i to get 1+2i.
\left(2-i\right)a+\left(1+2i\right)b=-3+4i
Swap sides so that all variable terms are on the left hand side.
\left(1+2i\right)b=-3+4i-\left(2-i\right)a
Subtract \left(2-i\right)a from both sides.
\left(1+2i\right)b=-3+4i+\left(-2+i\right)a
Multiply -1 and 2-i to get -2+i.
\left(1+2i\right)b=\left(-2+i\right)a+\left(-3+4i\right)
The equation is in standard form.
\frac{\left(1+2i\right)b}{1+2i}=\frac{\left(-2+i\right)a+\left(-3+4i\right)}{1+2i}
Divide both sides by 1+2i.
b=\frac{\left(-2+i\right)a+\left(-3+4i\right)}{1+2i}
Dividing by 1+2i undoes the multiplication by 1+2i.
b=ia+\left(1+2i\right)
Divide -3+4i+\left(-2+i\right)a by 1+2i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}