Evaluate
24+3i
Real Part
24
Share
Copied to clipboard
3\left(2-i\right)\left(3+2i\right)
Add 1 and 2 to get 3.
\left(3\times 2+3\left(-i\right)\right)\left(3+2i\right)
Multiply 3 times 2-i.
\left(6-3i\right)\left(3+2i\right)
Do the multiplications.
6\times 3+6\times \left(2i\right)-3i\times 3-3\times 2i^{2}
Multiply complex numbers 6-3i and 3+2i like you multiply binomials.
6\times 3+6\times \left(2i\right)-3i\times 3-3\times 2\left(-1\right)
By definition, i^{2} is -1.
18+12i-9i+6
Do the multiplications.
18+6+\left(12-9\right)i
Combine the real and imaginary parts.
24+3i
Do the additions.
Re(3\left(2-i\right)\left(3+2i\right))
Add 1 and 2 to get 3.
Re(\left(3\times 2+3\left(-i\right)\right)\left(3+2i\right))
Multiply 3 times 2-i.
Re(\left(6-3i\right)\left(3+2i\right))
Do the multiplications in 3\times 2+3\left(-i\right).
Re(6\times 3+6\times \left(2i\right)-3i\times 3-3\times 2i^{2})
Multiply complex numbers 6-3i and 3+2i like you multiply binomials.
Re(6\times 3+6\times \left(2i\right)-3i\times 3-3\times 2\left(-1\right))
By definition, i^{2} is -1.
Re(18+12i-9i+6)
Do the multiplications in 6\times 3+6\times \left(2i\right)-3i\times 3-3\times 2\left(-1\right).
Re(18+6+\left(12-9\right)i)
Combine the real and imaginary parts in 18+12i-9i+6.
Re(24+3i)
Do the additions in 18+6+\left(12-9\right)i.
24
The real part of 24+3i is 24.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}