( 1 + 11.3 \% ) ^ { 5 } = 1 + \frac { 1963 } { x }
Solve for x
x = \frac{1963000000000000000}{707952631156793} = 2772\frac{555306433369804}{707952631156793} \approx 2772.7843836
Graph
Share
Copied to clipboard
x\left(1+\frac{11.3}{100}\right)^{5}=x+1963
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x\left(1+\frac{113}{1000}\right)^{5}=x+1963
Expand \frac{11.3}{100} by multiplying both numerator and the denominator by 10.
x\times \left(\frac{1113}{1000}\right)^{5}=x+1963
Add 1 and \frac{113}{1000} to get \frac{1113}{1000}.
x\times \frac{1707952631156793}{1000000000000000}=x+1963
Calculate \frac{1113}{1000} to the power of 5 and get \frac{1707952631156793}{1000000000000000}.
x\times \frac{1707952631156793}{1000000000000000}-x=1963
Subtract x from both sides.
\frac{707952631156793}{1000000000000000}x=1963
Combine x\times \frac{1707952631156793}{1000000000000000} and -x to get \frac{707952631156793}{1000000000000000}x.
x=1963\times \frac{1000000000000000}{707952631156793}
Multiply both sides by \frac{1000000000000000}{707952631156793}, the reciprocal of \frac{707952631156793}{1000000000000000}.
x=\frac{1963000000000000000}{707952631156793}
Multiply 1963 and \frac{1000000000000000}{707952631156793} to get \frac{1963000000000000000}{707952631156793}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}